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ABSTRACT

Network-based Intrusion Detection Systems (NIDS), e.g., Snort, Bro or NSM, try to detect

malicious network activity such as Denial of Service (DoS) attacks and port scans by monitoring

network traffic. Research from network traffic measurement has identified various patterns

that exploits on today’s Internet typically exhibit. However, there has not been any significant

attempt, so far, to design algorithms with provable guarantees for detecting exploit patterns

from network traffic packets. In this work, we develop and apply data streaming algorithms to

detect exploit patterns from network packet streams.

In network intrusion detection, it is necessary to analyze large volumes of data in an on-

line fashion. Our work addresses scalable analysis of data under the following situations. (1)

Attack traffic can be stealthy in nature, which means detecting a few covert attackers might

call for checking traffic logs of days or even months, (2) Traffic is multidimensional and correla-

tions between multiple dimensions maybe important, and (3) Sometimes traffic from multiple

sources may need to be analyzed in a combined manner. Our algorithms offer provable bounds

on resource consumption and approximation error. Our theoretical results are supported by

experiments over real network traces and synthetic datasets.
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CHAPTER 1. INTRODUCTION

An Intrusion Detection System (IDS) is a piece of software or hardware designed to detect

unwanted attempts at accessing, manipulating and disabling of computer systems through a

network such as the Internet. An Intrusion Detection System can be network-based, protocol-

based or host-based. Network-based Intrusion Detection Systems (NIDS), e.g., Snort [99], Bro

[95] or NSM [67], try to detect malicious activity such as Denial of Service (DoS) attacks [91],

port scans [102] or even attempts to gain acess to computers by monitoring network traffic.

The network traffic measurement researchers have identified various patterns that the typical

exploits on today’s Internet (e.g., DoS attacks, port scans, worms) exhibit [113, 114]. However,

there has not been any significant attempt, so far, to design algorithms - with theoretical

guarantees on the space and/or time requirement, or the extent of approximation - for detecting

these known exploit patterns from network traffic packet data and applying them in NIDSs.

We observe that data stream algorithms, which compute various aggregates from massive data

streams online and in small space, can be applied to detect such exploit patterns from network

packet data. The goals of this research are (1) formalization of the notion of exploit patterns

and (2) design and analysis of efficient algorithms for detecting these patterns from network

packet streams.

1.1 Challenges in Network Monitoring

The Internet consists of routers connected to each other that forward IP packets. Traffic at

the routers may be viewed at several levels of abstraction [93, 56].

1. Packet logs: Each TCP segment (or UDP datagram) has a header that has source and

destination ports, and the IP packet that the TCP segment (or UDP datagram) envelops
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contains the source and destination IP addresses in its header. This can be collected at

switches, routers or network taps by tools like tcpdump [1] or wireshark [2].

2. Flow logs: Each flow is a collection of packets with same values for certain key attributes

such as the source and destination IP addresses. For each flow, the log contains cumulative

information about number of bytes and packets sent, start and end times, protocol types

etc. This is typically collected at border routers or taps by tools like FlowScan [96], YAF

[3] or Argus [4].

3. Traffic counters: A traffic counter keeps track of the number of bytes sent over each

link every few minutes. An example is MRTG logs [5], which record the volume of traffic

through SNMP-enabled devices.

It is most valuable to analyze flow logs and packet logs, because they contain maximum

information. However, this, at the same time, implies that we should be prepared to deal with

enormous volume of data. For example, the backbone of a typical regional ISP today is a

OC-192 network line with a transmission speed of 10 Gbits/sec, of which the packet overhead

part alone is 332 Mbits/s! Given the volume and the short-lived nature of this data, it is almost

impossible to store these data on a hard disk. Cisco routers that have IOS NetFlow [6] or

CS-MARS (Cisco Security Monitoring, Analysis, and Response System) [38] feature enabled

aggregate packets to flows and generate NetFlow records; these are exported to analyzing soft-

ware like NetFlow Collector (NFC) [7]. The potential devices where such monitoring algorithms

would be deployed are gateway routers (e.g., Cisco ASR 1000). Considering a typical Cisco

home router has 32-64 MB RAM and 4-8 MB Flash memory, and a typical desktop computer

(where a product like NetFlow Collector might be installed) or a gateway router has 6-8 GB

of RAM, none of these devices are able to store such network data streams in their entirety in

main memories. Any analysis on the data has to be performed online, i.e., accepting the fact

that we get to see each data item only once.
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1.2 Data Streams: Model and Algorithms

A data stream is an abstract model for applications where data is generated continuously

(e.g., stock quotes, network flows, call records in a telephone exchange, high-energy particle

physics experiments).

Definition 1.2.1 A data stream A = (a1, a2, . . . , am) is a sequence of elements, where each ai

is a member of [n] = {1, 2, . . . , n}.

The sheer volume and transience of data streams forces us to perform any computation

on the data in a single pass and using limited memory. These constraints have motivated the

emergence of a class of data structures called sketches, defined as follows:

Definition 1.2.2 A sketch is a data structure with the following properties:

• Property 1.2.1 A sketch requires small space, typically polylogarithmic in the size of the

stream, or the size of a subset of the stream we are interested in

• Property 1.2.2 It can be updated, in constant or polylogarithmic time, as the elements

of the stream are received

• Property 1.2.3 The aggregate that we want to compute on the stream can be computed

approximately based on the sketch

• Property 1.2.4 Some applications, with distributed streams (to be defined later), re-

quires the following property: if a separate sketch is maintained for each of two or more

streams, then the combination of the sketches should be able to answer the desired aggre-

gate on the union of the streams, with guaranteed accuracy

A sketch can be a simple uniform or weighted random sample of the stream elements,

or a projection along random vectors, or any other transformation that satisfies the above

properties.

We now present some basic research findings in data streams. Let mi = |{j : aj = i}|

denote the number of occurrences of i in the sequence A. For each k > 0, a useful statistics of
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the sequence is the kth frequency moment, defined as Fk =
∑n
i=1m

k
i . In particular, F0 is the

number of distinct elements in the sequence, F1(= m) is the length of the sequence, and F2 is

known as the “surprise index”.

In a seminal work, Alon et al [13] analyzed the space complexity of computing the frequency

moments. They presented lower bounds showing that an exact computation of Fk, or even an

accurate deterministic approximation of it, requires Ω(n) space, in the worst case. However, a

randomized approximation to Fk (for k ≥ 2) can be found as follows. First, choose a random

element ap from A. Then maintain the count X = |{q : q ≥ p, aq = ap}|. In other words, count

the number of reoccurrences of the element ap in the portion of the stream that succeeds ap

(including ap). Then, the random variable Y = m[Xk − (X − 1)k] is an unbiased estimator

of Fk, i.e. E[Y ] = Fk. Further, it can also be shown that the variance of Y is small. This

approach is termed as “sample and count”, and we show, in Chapter 2, how a variant of this

approach can be used for a different problem. Alon et al [13] also proved that F0, F1 and F2

can be approximated in logarithmic space, whereas the approximation of Fk for k ≥ 6 requires

nΩ(1) space. Of these, the problem of estimating F0 has drawn significant attention of the

researchers, and has been addressed by Flajolet and Martin [51] and Gibbons and Tirthapura

[57].

The problem of identifying the frequently occurring items [34, 87, 89] (often termed “heavy-

hitters”) from a stream has also been studied quite thoroughly. For any user-input threshold

φ ∈ (0, 1), Misra and Gries [89] came up with a deterministic algorithm to find the data items

that occur more than φm times in an array of size m. Their algorithm required O(m log 1
φ) time

and O( 1
φ) space for the sketch. The problem with their algorithm was that it was two-pass - the

first pass could identify the candidates for frequent items, and kept track of the counts of these

elements; and in the second pass, one had to eliminate, from these candidates, the ones that

were not actually frequent. However, with minor modifications of the original algorithm, and

a little sacrifice in precision, it is possible to come up with a single-pass, approximate variant

of the algorithm that provides the following approximation guarantees, for some user-input

threshold φ and approximation error ε < φ (note that for an online algorithm, m is the number

of elements received so far) :
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• All items whose frequencies exceed φm are output. There are no false negatives.

• No item with frequency less than (φ− ε)m is output.

• Estimated frequencies are less than true frequencies by at most εm.

The algorithm is simple: it maintains an associative array (of size at most 1
ε ) of (value, count)

pairs. On receiving each item ai, we check whether the value ai is already in the associative

array. If it exists, we increment its count by 1; otherwise, we add the pair (ai, 1) to the

array. Now, if adding a new pair to the array makes its size exceed 1
ε , then for each of the

(value, count) pairs in the array, we decrement the count by one; and throw away any value

whose count falls to zero after decrement. Note that this ensures at least the element which

was most recently added (with a count of one) would get discarded, so the size of the array,

after processing all pairs, would come down to 1
ε or less. Thus, the space requirement of this

algorithm is O(1
ε ). In Chapter 3, we apply an extension of this idea to identify correlated

heavy-hitters from multidimensional streams.

In data stream applications, often, the more recent an item is, the more is our interest

in it. So, a popular model for studying data streams is the sliding-window model, where we

focus on computing the aggregates on the last N items of the stream, using o(N) space. Datar

et al [40] solved the basic counting problem in the sliding-window model: given a stream of

bits, they came up with an ε-approximate algorithm for counting the number of 1’s among the

last N bits, using O(1
ε log2N) bits of memory. Their algorithm processed each item in O(1)

amortized and O(logN) worst-case time. They also extended their algorithm to maintain the

sum of last N elements, with a relative error of at most ε, in a stream of positive integers in

the range [0. . .R]. This algorithm needed O(1
ε (logN +logR)(logN)) memory bits. The arrival

of each new element was processed in O( logN
logR ) amortized time and O(logN + logR) worst-

case time. Gibbons and Tirthapura [58] came up with improved results for the same problem,

using a novel data structure called the wave. For the basic counting problem, they improved

the per-item processing time to O(1) in worst case. For the sum problem, they improved the

worst-case per-item processing time to O(1). We use the sliding window model for a different

problem in Chapter 2.
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With the emergence of huge networks, today’s applications often collect data not from a

single source, but from distributed sources. In such a scenario, we are interested in computing

aggregates over the union of the streams emerging from different sources. As we have already

discussed, network monitoring devices observe streams of packets. Each device has a small

workspace in which to store information on its observed stream, and the contents are periodi-

cally sent to a central data analyzer, in order to compute aggregated statistics on the streams.

Some existing network monitoring tools, e.g., Lucent’s InterpretNet and some products imple-

menting Cisco’s NetFlow protocol, use this mechanism for traffic monitoring.

As Gibbons and Tirthapura [57] pointed out, there is a subtle difference between the dis-

tributed streams model and the merged streams model. In the latter model, there is only one

party who observes both streams, and the streams are interleaved in an arbitrary order by an

adversary. In the distributed streams model, each party observes its own stream, and com-

putes the sketch on it. The sketches have the property that when combined, they can give

approximate answers to queries over the unions of all the streams. Gibbons and Tirthapura

[57] showed that for t > 2 streams and for any function f , the deterministic merged stream

complexity (i.e., space bound) is within a factor of t of the deterministic t-party distributed

stream complexity. It followed that deterministic merged streams algorithms can be designed

assuming that the streams are not interleaved, at a penalty of at most t.

Our study of the intrusion detection literature reveals that most of the signature-based

NIDS tools (e.g. Snort [99]), work by checking the packet payloads for signatures of well-

known attacks. This is not a very scalable method as the attacker can evade detection with

minor changes in the signature, but can still amount the same damage to the victim. Also,

the signature set can grow very large, e.g., the signature set of Snort contains 3,400 distinct

signatures. Matching these signatures sequentially with the packet payload is very expensive.

Among the anomaly-based intrusion detection tools, PAYL [111] compares the frequency dis-

tributions byte contents of training and test datasets to detect anomalous payloads. However,

Kolesnikov and Lee [76] and Fogla et al [52] showed that detection by PAYL and other anomaly

detection systems ([77, 104]) could be evaded by specially-crafted polymorphic blending attacks.

Moreover, none of these approaches paid much attention to the scalability issue.
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We found that in the area of network traffic measurement, there has been systematic study

of real network traffic data to identify various patterns of the typical exploits on today’s Internet

(e.g., DoS attacks, port scans, worms) [113, 114, 115]. Xu et al [113, 114] applied data mining

and information-theoretic techniques to automatically extract useful information from largely

unstructured data. This shows that exploit patterns can be detected by computing summary

statistics over large volumes of data, rather than inspecting the payload of each and every

packet for an exact or partial signature match. We observed that DoS attacks [91] and port

scans [102] are two types of attacks on the Internet where data-driven approaches can play

major roles in identifying potential threats, and hence discuss them in detail in the following

sections.

1.3 Denial of Service attacks

A DoS attack is an attempt to make a computer resource (e.g., a website or a database

server) unavailable to its intended users. The methods generally involve saturating the target

machine with external communications requests, such that it cannot respond to legitimate

traffic, or responds so slowly as to be rendered effectively unavailable; or, saturating some

other resource, such as a system buffer.

In February 2000, a series of massive DoS attacks incapacitated several high-visibility Inter-

net e-commerce sites, including Yahoo, Ebay, and E*trade. Next, in January 2001, the name

server infrastructure of Microsoft was disabled by a similar assault. Many other domestic and

foreign sites have also been victims, ranging from smaller commercial sites, to educational insti-

tutions, public chat servers and government organizations. Moore et al [91] monitored a lightly

utilized network, comprising 224 distinct IP addresses, over a period of 25 days in February

2001, and observed 12,805 attacks on over 5,000 distinct Internet hosts belonging to more than

2,000 different organizations during this period. The following few types of DoS attacks are

most common:

SYN Flood: This is perhaps the most common and widely studied form of DoS attack.

When a client attempts to start a TCP connection to a server, the client and server exchange

a series of messages which normally runs like this:
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1. The client requests a connection by sending a SYN (synchronize) message to the server.

2. The server acknowledges this request by sending SYN-ACK back to the client.

3. The client responds with an ACK, and the connection is established.

This is called the TCP three-way handshake, and is the foundation for every connection estab-

lished using the TCP protocol. The SYN Flood attack works if a server allocates resources for

the connection after receiving a SYN, but before it has received the ACK. The basic mechanism

to launch a SYN flood is the following: if half-open connections bind resources on the server, it

may be possible to take up all these resources by flooding the server with SYN messages. Once

all resources set aside for half-open connections are reserved, no new connections (legitimate

or not) can be made, resulting in denial of service. There are the two following methods to

launch a SYN flood attack - both involve the server not receiving the ACK.

• A malicious client can skip sending this last ACK message.

• By falsifying the source IP address in the SYN, it can make the server send the SYN-ACK

to the falsified IP address, and thus never receive the ACK.

UDP Flood: A UDP flood attack can be initiated by sending a large number of UDP packets

to random ports on a remote host. Since the target host finds (with high probability) that

no application is listening at that port, it replies with an “ICMP Destination Unreachable”

packet. Thus, for a large number of UDP packets, the victim host is forced to send many

ICMP packets, eventually leading it to be unreachable by other clients.

There are some other forms of DoS attacks (e.g., Smurf attack, Ping flood), the underlying

idea behind all of them being the same: the attacker pretends to be a benign host, and initiates

some form of communication request with the victim, the scale of the communication being

large enough to eventually exhaust all the system resources of the victim. A variant of DoS

attacks worth mention here is the Distributed DoS (DDoS) attack, where instead of a single

attacker, multiple compromised systems flood the bandwidth or resources of a targeted system.

The attack can be initiated by a single attacker, who compromises other systems to launch

an attack on the end victim(s) on a large scale. Note that if we treat the traffic flow of a
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single compromised system as a data stream, then the distributed streams model [57, 58] can

be useful in mining patterns from the union of these streams.

A DoS attack, or at least an attempt to launch one, can be detected by applying heavy-hitter

algorithms on traffic flow data. Where the frequent sources can be the potential attackers, the

frequent destinations can be the potential victims. In Chapter 3, we discuss our work on an

extension of the heavy-hitter problem [81] to design more informative sketches for detecting

the attackers and victims in a DoS attack under certain conditions. In Chapter 4, we discuss

some sketches we developed [80, 82] for identifying heavy-hitters from the union of multiple

data streams, which can be used for detecting DDoS attacks.

1.4 Port Scans

Some applications, running on specific ports, have some known vulnerabilities, and some-

times the network-based exploits take advantage of these vulnerabilities. The exploit traffic is

hence directed towards this port, e.g., the W32/Blaster worm took advantage of a buffer over-

flow in the Microsoft DCOM RPC locator service, an application that runs on TCP port 135,

to create a SYN flood. Port scanning is a technique to search a network host for open ports,

i.e., ports where a deployed application with known vulnerabilities is looking for an incoming

connection.

Jung et al [69] pointed out that a number of difficulties arise when we attempt to formulate

an effective algorithm for detecting port scans. The first is that there is no crisp definition of

the activity, e.g., an attempted HTTP connection to the main web server of a site should not

raise an alarm. However, whether a sweep through the entire address space looking for HTTP

servers should concern us depends on what intent the sweep is being done with, e.g., some

search engines not only follow embedded links but also scan ports in order to find web servers

to index. In addition, some applications (e.g., SSH, some P2P and Windows applications) have

modes in which they scan in a benign attempt to gather information or locate servers. Ideally,

we would like to separate out such benign use from overtly malicious one. We would note,

however, that the question of whether scanning by search engines is benign will ultimately be

a policy decision that will reflect the sites view of the desirability to have information about its
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servers publicly accessible.

Since we never know whether the intent behind a port scan is harmful or not, being able

to detect port scans is important from a security perspective. If we are allowed to make mul-

tiple passes over data gathered from packet/flow logs, then port scans can surely be detected.

However, detecting them online and using small space presents the usual challenge of network

monitoring.

We present a classification of port scans from [102]:

1. Vertical Scan: A sequential or random scan of multiple ports of a single IP address

from the same source in a given time window. These are usually an attempt to survey

which of several well known vulnerabilities applies to this host.

2. Horizontal Scan: A scan from a single source of several machines in a subnet aimed at

the same target port, i.e., the same vulnerability. In this case the attacker is searching for

any machine that is running specific service and does not care about any single machine

in particular.

Just like DoS attacks can be distributed ones, horizontal or vertical port scans can also be

launched by multiple sources working in tandem (sometimes referred to as “Coordinated Scans”

in the literature). However, horizontal or vertical port scans can be easily detected offline from

packet/flow logs, unless the scan is a stealth scan. A stealth scan is initiated with a very low

frequency to avoid detection. The key parameters in the definition of stealth scan include the

maximum threshold and the minimum threshold for the average interscan distance. An average

interscan distance below the minimum threshold indicates that the scan was not stealthy, i.e.,

not intended to evade NIDS systems. Two successive scans from the same source that are

separated by more than the maximum interscan distance are considered to be unrelated or

parts of different scanning episodes. We will discuss in Chapter 2 how we can formalize the

notion of “persistence” [79] of data items to detect sources that launch stealthy port scans.
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1.5 NIDS: The Current State of the Art

Having discussed two major exploit patterns, DoS attacks and port scans, we now move

on to discuss some of the measures that have been adopted so far to address these problems.

Traditionally, intrusion detection tools are classified into two broad categories: signature-based

and anomaly-based [66]. Signature-based NIDSs aim to detect well-known attacks as well as

slight variations of them, by identifying the signatures that characterize these attacks. Due to

its nature, a signature-based NIDS has low false positives but it is unable to detect any attacks

that lie beyond its knowledge. An anomaly-based NIDS is designed to capture any deviations

from the established profiles of users and the normal behavior patterns of systems. Although

in principle, anomaly detection has the ability to detect new attacks, in practice this is far from

easy. Anomaly detection has the potential to generate too many false alarms, and it is very

time consuming and labor-expensive to sift true intrusions from the false alarms.

Historically, most signature-based NIDS tools function by detecting N or more events in

a time window of T seconds. Network Security Monitor (NSM) [67] was the first NIDS to

work on such algorithm. It had rules to detect any source IP address connecting to more than

15 distinct destination IP addresses within a given time window. Similarly, Snort [99], a tool

developed later by Martin Roesch, checks whether a given source IP address connected to more

than X number of ports or more than Y number of destination IP addresses within Z seconds,

where X, Y, Z are configurable parameters. However, Bro [95], another popular NIDS, worked

on the observation that failed connection attempts are better indicators for identifying port

scans. Since scanners have little knowledge of network topology and system configuration, they

are likely to often choose an IP address or port that is not active. The algorithm provided

by Bro treated connections differently depending on their services (application protocols). For

connections using a service specified in a configurable list (e.g., HTTP, SSH, SMTP etc), Bro

only performs bookkeeping if the connection attempt failed (was either unanswered, or elicited

a TCP RST response). For others, it considers all connections, whether or not they failed. It

then tallies the number of distinct destination addresses to which such connections (attempts)

were made. If the number reaches a configurable parameter N , then Bro flags the source
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address as a scanner.

The developers of the NIDS tools focussed on building full-fledged applications that can

monitor network traffic, generate logs and report incidents (the definition of “incident” depends

on the policy of the user, and is configurable within the tool). While these tools are lightweight

and (mostly) open-source, and some detailed documentation regarding their technical archi-

tectures are available [46], it seems that the overall approach is not very scalable. Most NIDSs

look for an exact match for a signature, which is a sequence of bytes, in the payloads of pack-

ets. However, when using tight signatures, the matcher has no capability to detect attacks

other than those for which it has explicit signatures; the matcher will in general completely

miss novel attacks, which, unfortunately, continue to be developed at a brisk pace. Also, the

total number of patterns contained in the signature set of a NIDS can be quite large, hence

matching them sequentially is time-wise expensive. Although Gonzalez and Paxson [61] came

up with some sampling-based modifications of Bro to identify the heavy-hitters from the traffic

streams, there is no published literature on their algorithms with theoretical guarantees, and

there is certainly scope for identifying more such aggregates from traffic streams. Gu et al [63]

attempted to create a comprehensive information-theoretic framework for analyzing intrusion

detection systems, but even their work does not address the computational resource issues like

memory or CPU time, unlike our work.

1.6 Thesis Contributions

There is no silver-bullet solution to network intrusion detection, and we do not claim that

our algorithms can be immediately converted to ready-to-deploy network monitoring tools.

Lately, there have been significant attempts to apply machine learning algorithms, particularly

classification techniques, to identify network traffic as benign or harmful. Recently, Sommer

and Paxson [101] did a comprehensive critique of the machine-learning based approaches in the

network intrusion detection domain; one of their main arguments was that machine-learning

algorithms are more effective in classifying objects based on “learning” from past (labeled)

data, rather than identifying outliers, as the anomaly detection systems need [8].

We focus on detecting a set of patterns from network packet streams that have repeatedly
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been shown to be characteristic of network intrusions, or attempts thereof. The major limi-

tations of the current NIDSs are that while signature-based systems fail to detect unforeseen

attacks, anomaly-based systems are very likely to generate false alarms. However, even a low

false positive rate can make an NIDS ineffective [18], while undetected attacks can cause major

damage to a network. Also, as Axelsson [18] pointed out, applying a classification-based ap-

proach for the intrusion detection problem is hard because of the base-rate fallacy - the number

of packets that contain traffic from malicious sources is typically a very small fraction of the

number of packets observed in a monitor over a given period of time.

The common theme underlying the work presented in Chapters 2, 3 and 4 are the following:

• While most of the research in intrusion detection focused on improving precision and

recall, our work in Chapters 2, 3 and 4 address the challenges presented by limitation

of computational resources (memory, CPU time). They also mathematically establish

the trade-off between the amount of resource (mostly memory) used and the accuracy of

results. Usually, both the precision and the recall improve as the space budget is increased,

unlike many machine learning applications where there is a trafe-off involved between the

precision and the recall [14].

• In network intrusion detection, scalability can be an important issue because of the fol-

lowing reasons: (1) attack traffic can be stealthy in nature, which means detecting a few

covert attackers might call for checking traffic logs of days or even months, (2) we may

need to analyze the traffic data along multiple dimensions, or (3) we may need to analyze

the traffic data from multiple sources. We address those issues in Chapters 2, 3 and 4

respectively.

• Our algorithms (and data stream algorithms, in general) in Chapters 2, 3 and 4 offer

provable bounds on the probabilities of generating false positives and false negatives,

and/or the errors made in estimating quantities like frequency and temporal persistence.

We design space and/or communication-efficient algorithms for detecting such patterns

online; present lower-bound proofs, wherever appropriate, for showing some problems are in-

trinsically hard; and demonstrate the practical viability of our algorithms with experiments on
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real and synthetic datasets. While our motivation of working on these data stream problems

came from the network security domain, these are novel problems in the literature of streaming

algorithms; particularly, our work on persistent items in Chapter 2 shifts the focus from the

oft-discussed frequency distribution in streams to the temporal dynamics of items appearing in

a stream.

Here are the principal contributions of this thesis:

We formalize the notion of temporally persistent items occurring in a data stream. Unlike

frequent items or heavy-hitters which have drawn significant attention in data stream research,

persistent items do not necessarily contribute a lot to the volume of incoming traffic towards

a potential victim, since the attacker attempts to conduct the probe in the stealth mode.

However, the (source) IP address or port number of the attacker has to show up in a sufficiently

large number of distinct timeslots in order for the attack to be effective. We call such items (IP

addresses or port numbers) as “temporally persistent”. Our contributions are: (1) We show

that any algorithm that tracks all temporally persistent items in the stream must take space

superlinear in the number of distinct items, which is prohibitively expensive. (2) We design a

“sketch”, a hash-based technique of creating a summary of the data stream, to approximately

identify persistent items from an entire stream (“fixed window”). (3) We also extend the sketch

for an alternative model where the persistent items are tracked over a sliding window of recent

timeslots, and this sketch takes space that is (on expectation) within a factor of two of that

taken by the sketch for the fixed window version. Both sketches detect all persistent items with

high probability, and do not report any items, provably, whose persistence fall below a threshold.

(4) We experimented with three different datasets (one real and two synthetic) to see how the

accuarcy and memory footprint of the algorithm varies with the skewness of the dataset. Our

algorithms performed best for the two datasets out of three which had highest skewness of

persistence and lowest mean persistence. (5) Our experiments also show that typically the

persistence of IP addresses in real network traffic traces have a very skewed distribution, which

works to the advantage of our algorithm since we save space at the cost of not storing items

with very low persistence.

We consider online mining of correlated heavy-hitters (CHH) from a data stream, i.e.,
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queries of the following form: “In a stream S of (x, y) tuples, on the substream H of all x

values that are heavy-hitters, maintain those y values that occur frequently with the x values

in H”. In intrusion detection, this sort of query will be useful in multidimensional analytics of

the attack traffic, e.g., in a Denial of Service (DoS) attack, while the frequent sources detected

at a large ISP backbone router (like the Cisco 12000 Series [9]) may identify the attackers, the

frequent destinations in the sub-stream of a single attacker may identify the potential victims.

We advance the state of the art by (1) formulating an approximate version of the CHH problem,

(2) designing a sketch for approximately tracking of CHHs, with provable guarantees on the

maximum error estimates, (3) theoretically deriving the minimum space requirement for our

sketch under constraints imposed by our problem formulation, and (4) conducting experiments

that demonstrate the space-accuracy trade-off on a large stream of IP packet headers from a

backbone network link.

We present algorithms for identifying frequently occurring items in a large distributed data

set. In the parlance of network exploit pattern detection, this will be useful if a group of

coordinated attackers send a lot of traffic to a victim to launch a Distributed Denial of Service

(DDoS) attack. The IP address of the victim may not be frequent in the packet stream

coming from a single source, but may be frequent if the union of the packet streams from

all the sources are considered. However, sending all packet streams to a central aggregator

is neither a scalable nor a fault-tolerant solution. (1) Our algorithms use gossip [42] as the

underlying communication mechanism, since gossip does not rely on any central control, or

on an underlying network structure, such as a spanning tree. If this process continues for a

(short) period of time, the desired results are computed, with probabilistic guarantees on the

accuracy. (2) Our algorithm for identifying frequent items is built by layering a novel small-

space “sketch” of data over a gossip-based data dissemination mechanism. We prove that the

algorithm identifies the frequent items with high probability, and provide bounds on the time

till convergence. (3) We experiment with our algorithms on two different synthetic datasets,

generated from different distributions, to show that both the sketch size and the number of

rounds of gossip needed till convergence, can in practice be kept orders of magnitude lower

than what the theoretical analyses demand.
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CHAPTER 2. Space-Efficient Tracking of Persistent Items in a Massive

Data Stream

Motivated by scenarios in network anomaly detection, in this chapter, we consider the

problem of detecting persistent items in a data stream, which are items that occur “regularly”

in the stream. In contrast with heavy-hitters, persistent items do not necessarily contribute

significantly to the volume of a stream, and may escape detection by traditional volume-based

anomaly detectors.

We first show that any online algorithm that tracks persistent items exactly must necessarily

use a large workspace, and is infeasible to run on a traffic monitoring node. In light of this

lower bound, we introduce an approximate formulation of the problem and present a small-space

algorithm to approximately track persistent items over a large data stream. We experimented

with three different datasets to see how the accuracy and memory footprint of the algorithm

varies with the skewness of the dataset. Our algorithms performed best for the two datasets

out of three which had highest skewness of persistence and lowest mean persistence. To our

knowledge, this is the first systematic study of the problem of detecting persistent items in a

data stream, and our work can help detect anomalies that are temporal, rather than volume

based.

2.1 Introduction

We consider the problem of tracking persistent items in a large data stream. This problem

has particular relevance while mining various network streams, such as the traffic at a gateway

router, connections to a web service, etc. Informally, a persistent item is one that occurs

“regularly” in the stream.
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More precisely, suppose that the time at the stream processor is partitioned into non-

overlapping intervals called “timeslots”. Consider a stream of elements of the form (d, t) where

d is an item identifier, and t is a timeslot during which the item arrived. The t values are in

an increasing order within the stream. Multiple items can arrive in the same timeslot, and the

same item may arrive multiple times within a time slot. Suppose the total number of timeslots

in the stream is n. The persistence of an item d is defined to be the number of distinct timeslots

in which d was observed. The persistence of any item is an integer between 0 and n (inclusive).

An item is said to be α-persistent, for some constant 0 < α ≤ 1, if its persistence is at least αn.

Given a user-defined α, the problem is to output the set of α-persistent items in the stream.

Persistent items exhibit a repeated and regular pattern of arrival, and are significant for

many applications. Giroire et al. [59] monitored traffic from end-hosts to detect communication

across botnet channels. They observed that persistent destinations were likely to belong to one

of two classes: (1)either they were malicious hosts associated with a botnet, or (2)they were

frequently visited benign hosts. It was also observed that the latter set of hosts could be

identified easily and assembled into a “whitelist” of known good destinations. They found that

tracking persistent items in the network stream, followed by filtering out items contained in

the whitelist, resulted in reliable identification of botnet traffic.

More broadly, persistent items are often associated with specific anomalies in the context

of network streams: periodic connections to an online advertisement in a pay-per-click revenue

model [107] is an indicator of click fraud [117], repeated (failed) connections observed in the

stream is indicative of a failed or unreachable web service [64]; botnets periodically “phone

home” to their bot controllers [59]; attackers regularly scan for open ports on which vulnerable

applications are usually deployed [102]. While the narrative in this paper draws from applica-

tions in the network monitoring space, it appears that the problem of detecting persistent items

in a data stream is broadly applicable in other data monitoring applications. For example, per-

sistent use of gathering techniques such as telephone interception or satellite imaging might

indicate an “Advanced Persistent Threat” (APT) [105] for a target group, e.g., a government.

The persistent items in a stream could be very different from the frequently occurring items

(or “heavy-hitters”) in a stream. An item is called a φ-heavy hitter if it contributes to at
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least a φ fraction of the entire volume of the stream. There is a large body of literature on

heavy-hitter identification (including [89, 87, 50, 29, 33, 36]). A persistent item need not be

a heavy hitter. For example, the item may appear only once in each time slot and may not

contribute significantly to the stream volume. Such “stealthy” behavior was indeed observed in

botnet traffic detection [59]; the highly persistent destinations which were not contained in the

whitelist did not contribute in any meaningful way to the traffic volume. In fact, the traffic to

these destinations was stealthy and very low volume, perhaps by design to evade detection by

traditional volume-based detectors. Conversely, a heavy-hitter need not be a persistent item

either – for example, an item may occur a number of times in the stream, but all its occurrences

maybe within only a couple of timeslots. Such an item will have a low persistence. Clearly,

the set of persistent items in a stream can be very different from the set of heavy-hitters in

the stream; their intersection can very well be empty. There seems to be no easy reduction

from the problem of tracking persistent items to the problem of tracking heavy-hitters. For

example, one could attempt to devise a “filter” that eliminated duplicate occurrences of an

item within a time slot, and then apply a traditional heavy-hitter algorithm on the resulting

“filtered” stream. But this approach does not work in small space, because such a filter would

itself take space proportional to the number of distinct items that appeared within the timeslot,

and this number maybe very large, especially for the type of network traffic streams that we

are interested in.

A closely related problem is the problem of identifying heavy distinct hitters (HDHs) in a

data stream (Venkataraman et al.[110] and Bandi et. al. [20]). In the heavy distinct hitters

problem, we are given a stream S′ of (x, y) pairs, of length N . For a parameter β, 0 < β ≤ 1,

the set of β-HDHs in S′ is defined as the set of all those values of x that have occurred with

more than Nβ distinct values of y. There is a reduction from the problem of tracking persistent

items to that of identifying HDHs, as follows. Consider the identification of α-persistent items

on a stream S of (d, t) pairs, of length N . Let n denote the total number of timeslots in S.

Consider a stream S′ of (x, y) pairs where for each element (d, t) ∈ S, there is an element

(x = d, y = t) in S′. Then, the nα
N -HDHs in S′ are the set of α-persistent items in S. There are

two significant issues with using such a reduction for solving our problem using an algorithm
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(such as in [110, 20]) for HDH identification. (1)The first one is that for HDH identification, the

threshold nα
N should be known beforehand. Though n, the number of timeslots is usually known

before the stream is observed, the number of packets N is not known beforehand, so the prior

algorithms for HDHs cannot be directly used. (2)Next, even if we were to modify the algorithms

for HDHs to work with an “adaptive threshold”, that can change as the number of elements

increases (which seems non-trivial), there is special structure in the data in the persistent items

identification problem that can be used here. In the heavy distinct hitter problem on a stream

of (x, y) values, there is no relative ordering required on the y values, and the same (x, y) tuple

can re-occur at arbitrary positions in the stream. But in the persistent items problem on a

stream of (d, t) tuples, the t values must be in a non-decreasing order (since they represent the

times of observation at the stream processor). An important consequence of this difference is

that the algorithms for HDH identification ([110, 20]) need to use “distinct counters” (such as

in [57, 51]) to count the number of distinct y values associated with each value of x. Hence, the

space complexity of their algorithms is the number of counters maintained multiplied by the

space taken by an (approximate) distinct counter. Approximate distinct counting is inherently

expensive space-wise, since it has been shown [68] that maintaining distinct counters with a

relative error of ε requires Ω(1/ε2) space. Our algorithm does not need to use approximate

distinct counters, making it simpler, more efficient, and easier to implement.

Prior work in Giroire et al. [59] used the following method to track persistent items in a

stream of network traffic. For each distinct item in the stream, their method maintained (1)The

number of timeslots in which the item has appeared in the stream so far, and (2)Whether or

not the item has appeared in the current timeslot. This allowed them to exactly compute the

number of timeslots that each item has appeared in, and hence exactly track the set of persistent

items. However, the space taken by this scheme is proportional to the number of distinct items

in the stream. The stream could have a very large number of distinct items (for example, IP

sources, or destinations), and the memory overhead may render this infeasible on a typical

network monitor or a router. Thus the challenge is to track the persistent items in a stream

using a small workspace, and minimal processing per element. Further, all tracking must be

done online, and the system does not have the luxury of making multiple passes through the
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data.

2.1.1 Contributions

In this work, we present the first small-space approximation algorithm for tracking persistent

items in a data stream, and an evaluation of the algorithm. Our contributions are as follows.

Space Lower Bound: We first consider the problem of exactly tracking all α-persistent

items in a stream, for some user-defined α ∈ (0, 1]. For this problem, we show that any

algorithm that solves it must use Ω(|D| log nα) space, where |D| is the number of distinct items

in the stream, and n is the total number of slots, even when the number of persistent items is

much smaller than |D|.

Approximate Tracking of Persistent Items: In light of the above lower bound, we

define an approximate version of the problem. We are given two parameters, α - the threshold

for persistence, and ε < α, an approximation (or “uncertainty”) parameter. The task is to

report a set of items with the following properties: every item that is α-persistent is reported,

and no item with persistence less than (α− ε) is reported. We also formulate this problem for

a “sliding window” of the most recently observed items of the stream.

Small Space Algorithm: For the above problem of approximate tracking of persistent

items, we present a randomized algorithm that can approximately track the α-persistent items

using space that is typically much smaller than the number of distinct items in the stream. The

expected space complexity of the algorithm is O
(
P
εn

)
, where P is the sum of the persistence

values of all items in the stream, and n is the total number of timeslots. The algorithm has a

small probability of a false negative (i.e. an α-persistent item is missed). This probability can

be made arbitrarily small, at the cost of additional space. Note that any algorithm will need

space that is at least as large as the size of the output, i.e., the number of α-persistent items in

the stream. The worst case scenario is when every item is α-persistent, forcing the algorithm

to use space proportional to the number of distinct items! Fortunately, this situation does not

seem to occur in practice and only a fraction of items are very persistent, and this helps our

algorithm considerably. We also prove that if persistence of different items in a stream follow

a power law distribution, then the space taken by our algorithm is O
(

1
ε

)
.
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Sliding Windows: In most network monitoring applications, the data set of interest is

not the entire traffic stream, but only a window of the recent past (say, the n most recent

timeslots). For instance, Giroire et al [59] used this sliding window model in their work on

botnet traffic detection. Though the size of the data set has decreased when compared with

the fixed window case, maintaining statistics over a sliding window is still a hard problem, since

the data contained within a sliding window is often too large to be stored completely within

the memory of the stream processor. This is a harder problem than the fixed window, since it

has to deal with (old) elements falling off the window. We present an extension to our fixed

window algorithm to handle the sliding window model. Interestingly, the expected space cost

of our sliding window algorithm is within a factor of two of the space cost of the fixed window

algorithm.

Experimental Evaluation: We evaluate our algorithm against three datasets: a large,

real-world network traffic trace (which we call HeaderTrace) collected from an Internet back-

bone link, as well as two artifically created datasets, which we call Synthetic1 and Synthetic2

respectively, the latter having a skewness of persistence (17.17) which is three times that of

the former (5.67). In other words, Synthetic1 had a more uniform distribution of persistence

than Synthetic2 or HeaderTrace.

Our algorithm performed best on HeaderTrace and Synthetic2, and a little worse on

Synthetic1. On HeaderTrace, our small-space algorithm uses upto 85% less space than the

naive algorithm and typically incurs a false positive rate of less than 1% and a false negative

rate of less than 4%. We also see that false positive rate never exceeds 3% for any parameter

setting, while the false negative rate stays below 5% for all but the most aggressive thresholds

for persistence. For Synthetic2, which had a skewness about twice that of HeaderTrace, the

maximum FPR was 2.2%, the typical FNR being about 6%. The skewness of persistence for the

Synthetic1 dataset was about 60% of that of HeaderTrace (9.28). Although the maximum

FNR for Synthetic1 is 11.5% (the theoretical maximum FNR is 13%) and the maximum FPR

is 15.6%, the typical FNR and FPR are both within 4%. The comparative performance on the

three datasets shows that our algorithm in fact works better for datasets with high skewness

of peristence and low mean persistence, which is very typical of real-life network traffic.
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2.1.2 Roadmap

The rest of this paper is organized as follows. A precise statement of the problem is presented

in Section 3.1.1, followed by a lower bound on the space cost of exactly tracking the persistent

items in a stream. Our algorithms for the fixed and sliding windows models are presented in

Section 2.3, followed by their analysis and correctness. Experimental results are described in

Section 2.4. A detailed discussion of related work is presented in Section 2.5.

2.2 Problem Definition

Consider a world where time is divided into timeslots (or slots) that are numbered 1, 2, . . ..

Let S be a stream of elements of the form S = 〈(d1, t1), (d2, t2), . . .〉. Each element is a tuple

(di, ti), where di is an item identifier (IP address, hostname, etc), and ti is the time slot during

which the element arrived. It is assumed that the tis are in non-decreasing order. All elements

that have the same values of ti are said to be in the same timeslot. Clearly, a timeslot consists

of elements that form a contiguous subsequence of the observed stream.

The duration of a timeslot depends on the application on hand. In the botnet detection

application [59], the duration of a timeslot was chosen to be between 1 hour and 24 hours,

primarily because these were suspected to be the possible lengths of time between successive

connections from the (infected) client to malicious destinations, for the botnets that they

considered. Since then, there have been other botnet attacks that work on a much smaller

timescale (see Section 2.4 for a discussion). In an eventual solution to botnet attack detection,

we may need to consider running the algorithm simultaneously with different timeslot durations,

to monitor multiple types of attacks.

We define a window Sr` to consist of all stream elements (di, ti) whose timeslots are in the

range [`, r], i.e. Sr` = {(di, ti) ∈ S|` ≤ ti ≤ r}. The size of window Sr` is defined as (r − `+ 1),

i.e. the number of timeslots it encompasses. For a given window we define the persistence of

an item in that window as follows:

Definition 2.2.1 The persistence of an item d over a window Sr` , denoted pd(`, r), is defined
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as the number of distinct slots in {`, `+ 1, . . . , r} that d appeared in.

pd(`, r) = |{t|((d, t) ∈ S) ∧ (` ≤ t ≤ r)}|

Definition 2.2.2 An item d is said to be α-persistent in window Sr` if pd(`, r) ≥ α(r− `+ 1).

In other words, d must have occurred in at least an α fraction of all slots within the window.

We state two versions of the problem, the first version for a fixed window, and the second

version for a sliding window. In practice, the sliding window version is more useful.

2.2.1 Exact Tracking of Persistent Items

Problem 1 Identifying Persistent Items Over a Fixed Window: Devise a space-efficient

algorithm that takes as input a prespecified window W = Sn1 and a persistence threshold α, and

at the end of observing the stream, returns the set of all items that are α-persistent. In other

words, the algorithm will report every item that is α-persistent in W and will not report any

item that is not α-persistent.

A straightforward algorithm for this problem would track every distinct item in the stream,

and for each distinct item, count the number of slots (from 0 to n − 1) during which the

item appeared. For a single item, its persistence can be tracked in a constant number of

bytes (assuming that the item identifier and slot number can be stored in constant space), by

maintaining a counter for the number of timeslots the item has appeared in so far, in addition

to one bit of state for whether or not the item has appeared in the current timeslot. The total

space consumed by the naive algorithm is of the order of the number of distinct items in the

stream. In general, this would be a large number and the space overhead may make it infeasible

for this algorithm to be deployed within a network router.

Space Lower Bound for Exact Tracking: We now show that any algorithm that solves

Problem 1 exactly must require Ω(m) space in the worst case, where m is the number of distinct

items in the input. Importantly, Ω(m) space is needed even if the number of persistent items

is much smaller than m.
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Lemma 2.2.1 Any algorithm that can exactly solve Problem 1 must use Ω(m log(nα+ 1)) bits

of space in the worst case, where m is the number of distinct items in the input.

Proof: Without loss of generality, suppose that the m distinct items that appear in the

stream are labeled 1, 2, 3, . . . ,m. Consider the state of the stream after observing k = (n−αn)

timeslots. For i from 1 to m, let ni denote the number of timeslots among 1, 2, . . . , k during

which item i has appeared. Consider the vector u = 〈n1, n2, . . . , nm〉. Consider the following

set V of possible assignments to u, where each component in u is chosen from the range

0, 1, 2, . . . , αn. The size of V is (1 + nα)m. We show that any algorithm that solves Problem

1 must distinguish between two distinct vectors in V , and hence must have a different state of

its memory for two input streams that result in different assignments to u.

We use proof by contradiction. Suppose the above was not true, and there were two input

streams A and B which, at the end of k slots, resulted in vectors vA, vB ∈ V respectively.

Suppose vA 6= vB but the states of the algorithm’s memory were the same after observing the

two inputs. Now, vA and vB must differ in at least one coordinate. Without loss of generality,

suppose they differed in coordinate 1, so n1(A) 6= n1(B), and without loss of generality suppose

n1(A) < n1(B). Consider the rest of the stream, from slot n − nα onwards. Suppose these

slots had nα−n1(B) slots in which item 1 occurred. Clearly, appending this stream to stream

A results in a stream with n slots where the persistence of item 1 is n1(A) + (nα − n1(B)) =

nα− (n1(B)− n1(A)) < nα, and appending this same stream to stream B results in a stream

with n slots where the persistence of item 1 is nα. Thus, item 1 must be reported as α-persistent

in the latter case, and not in the former case. But this is not possible, since the algorithm has

the same memory state for both A and B, and sees the same substream henceforth, leading to

a contradiction.

To distinguish between any two vectors in V , the algorithm needs at least log |V | bits of

memory. Since the size of V is (nα+ 1)m, the lower bound is Ω(m log(nα+ 1)) bits.
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2.2.2 Approximate Tracking of Persistent Items

In light of the above lower bound on the space cost of exact tracking of persistent items, we

define a relaxed version of the problem. Here, in addition to the persistence threshold α, the

user provides two additional parameters, ε ∈ [0, 1], an “uncertainty parameter”, and δ ∈ [0, 1],

an error probability.

Problem 2 Approximate Tracking of Persistent Items over a Fixed Window: Given

a fixed window W = Sn1 , persistence threshold α, approximation parameter ε, and error proba-

bility δ, devise a small space algorithm that returns a set of items with the following properties.

A. Every Persistent Item is reported with high probability. If pd(1, n) ≥ α, then d is returned

as being persistent with a probability at least 1− δ.

B. Items that are far from persistent are not reported. If pd(1, n) < (α− ε) · n, then d is not

reported

Sliding Windows. The sliding window version of the problem requires that we continu-

ously monitor the window of the n most recent timeslots in the stream.

Problem 3 Approximately identifying Persistent Items over a Sliding Window: The

problem of approximately tracking persistent items over a sliding window is the same as the

above Problem 2, except that the window of interest, W , is the set of the n most recent timeslots

in the stream, and changes continuously with time.

The fixed window version is a special case of the sliding window, where the window is equal

to the entire stream. The space lower bound for fixed window obviously applies to the sliding

window version, hence it is also necessary to consider an approximate version of the problem

for sliding windows, if we are to achieve a small space solution.

2.3 An Algorithm for Approximate Tracking of Persistent Items

We present algorithms for approximate tracking of persistent items in a stream. We first

present the algorithm for tracking persistent items over a fixed window, followed by a proof of

correctness and analysis of complexity. We then present the algorithm for sliding window.
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2.3.1 Fixed Window

Intuition. The goal is to track the persistence of as few items in the stream as possible, and

hence minimize the workspace used by the algorithm. Ideally, we track (and hence, use space

for) only the α-persistent items in the stream, and not the rest. But this is impossible, since

we do not know in advance which items are α-persistent.

The strategy is to set up a hash-based “filter”. Each stream element is sent through this

filter, and if it is selected by the filter, then the persistence of the corresponding item is tracked

in future timeslots. The filter behaves in such a way that if the same item reappears in the same

timeslot, then its chances of being selected by the filter are not enhanced, but if the same item

reappears in different timeslots, then its chances of passing the filter get progressively better.

For achieving the above, the filter for an item is selected to be dependent on the output of a

hash function whose inputs are both the item identifier as well as the timeslot within which it

appeared.

Let h denote a hash function that takes two inputs, and whose output is a random real

number in the range [0, 1]. For item d arriving in slot t, the item passes through the filter if

h(d, t) < τ , for some pre-selected threshold τ . The value of τ is chosen to be small enough that

an item with a small value of persistence is not likely to cross this filter; in particular, transient

items which only occur in a constant number of timeslots will almost certainly not make it.

Note that if the same item d reappears in the same timeslot t, then the hash output h(d, t) is

the same as before, hence the probability of the item passing the filter does not increase.

After an item has passed the filter, the persistence of this item in the remaining timeslots

is tracked exactly, since this requires only a constant amount of additional space (per item).

Finally, the persistence of an item is estimated as the number of slots that it has appeared in

since it started being tracked (this is known exactly), plus an estimate of the number of slots

it had to appear in before we started tracking it. An item is returned as α-persistent if its

estimated persistence is greater than a threshold T (decided by the analysis). Note that there

may be items which are being tracked because they passed the filter, but are not returned as

α-persistent, since the estimate of their persistence did not exceed T .
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The higher the threshold τ , the greater is the accuracy in our estimate of the persistence,

but this comes at the cost of higher memory consumption since more items will now pass the

filter. Setting the value of τ gives us a way to tradeoff accuracy versus space.

Formal Description. Let D(S) denote the set of distinct items in the stream S, and suppose

that the timeslots of interest are 1, 2, . . . , n. The stream processor tracks only a subset of D(S),

and maintains a data structure that we call a “sketch”, which summarizes the stream elements

seen so far. Let S denote the sketch data structure maintained by the algorithm.

S is a set of tuples of the form (d, nd, td), where d is an item that has appeared in the

stream, nd is the number of slots in which d has appeared, since we started tracking it, and td

is the most recent timeslot during which d has appeared. For each item d, if d is being tracked,

then there is a tuple of the form (d, ·, ·) belonging in S; if d is not being tracked, then there is

no such tuple in S. For each item d, there can never be more than one tuple of the form (d, ·, ·)

in S at a time. We say d ∈ S to mean “there is a tuple (d, ·, ·) belonging to S”. Similarly, we

say d 6∈ S.

The inputs to the algorithm are the persistence threshold α, the total number of slots n,

approximation parameter ε, and error probability δ. The algorithm selects a hash function

h(d, t) where d is an item, and t is the timeslot number. It is assumed that h(d, t) is a uniform

random real number in (0, 1), and that the outputs of h on different inputs are mutually

independent; when presented with the same input (d, t), the hash function returns the same

output. We note that it is possible to work with weaker assumptions of hash functions whose

range is a finite set of integers, but we assume the current model for simplicity and ease of

exposition.

Before any element arrives, Algorithm 8 Sketch-Initialize is invoked to initialize the data

structures. When an element (d, t) arrives, Algorithm 9 is invoked to update the S data

structure. When there is a query for persistent items in the stream, Algorithm 3 Detect-

Persistent-Items is called to process the query and will return a list of all items deemed persistent.
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Algorithm 1: Sketch-Initialize(m,n, α, ε, δ)
Input: Size of domain m; Total number of slots n; persistence threshold α; parameter ε;

error probability δ

1 Initialize the hash function h : ([1,m]× [1, n])→ (0, 1);
2 S ← φ; τ ← 2

εn ; T ← αn− εn
2

Algorithm 2: Sketch-Update(d, t)
Input: d is an item; t is the timeslot of arrival

1 if d ∈ S then
2 if td < t then

/* d appeared in a new slot */

3 nd ← nd + 1; td ← t;
4 end
5 else
6 if h(d, t) < τ then

/* Start tracking item d from now onwards */

7 S ← S ∪ (d, 1, t);
8 end
9 end

Algorithm 3: Detect-Persistent-Items

1 foreach tuple (d, nd, td) ∈ S do
2 p̂d ← nd + 1

τ

3 if p̂d ≥ T then
4 Report d as a persistent item
5 end
6 end
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2.3.1.1 Analysis of the Fixed Window Algorithm

We present the proof of correctness and analysis of space complexity. Consider an item

d, with absolute persistence pd = pd(1, n). For parameter q, 0 < q ≤ 1, let G(q) denote the

geometric random variable with parameter q, i.e., the number of Bernoulli trials till a success

(including the trial when the success occurred), where the different trials are all independent,

and the success probability is q in each trial.

For each item d that appeared in the stream, there are two possibilities: (1) either d is

tracked by the algorithm from some timeslot t onwards, or (2) d is not tracked by the algorithm,

because none of the tuples (d, t) were selected by the filter.

In each distinct slot where d appears, the probability of d being sampled into the sketch is

τ . If G(τ) > pd, then this will lead to case (2) above, and d will fail to make it into the sketch

S. On the other hand, if G(τ) ≤ pd, this will lead to case (1), and d will be inserted into the

sketch at some timeslot in Algorithm 9, and the counter nd = pd −G(τ) + 1.

Lemma 2.3.1 False Negative: If an item d has pd ≥ αn, then the probability that this item

will not be reported as α-persistent by Algorithm 3 is no more than e−2.

Proof: From Algorithm 3, the item will not be reported if p̂d < T , i.e., nd + 1
τ < T . Using

τ = 2
εn and T = αn− εn

2 , we get:

Pr[False Negative] = Pr[pd −G(τ) + 1 +
1
τ
< T ]

= Pr[G(τ) > 1 +
1
τ

+ pd − T ]

= Pr[G(τ) > 1 +
1
τ

+
εn

2
+ (pd − αn)]

≤ Pr[G(τ) >
2
τ

]

In the last step, we have used the fact pd ≥ αn, and 1
τ = εn

2 . Using the fact Pr[G(p) > t] =

(1− p)t, we get

Pr[False Negative] ≤ (1− τ)
2
τ ≤ e−2

In the last step, we have used the inequality 1− x ≤ e−x.
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Lemma 2.3.2 Items that are far from persistent are not reported: If an item d has

pd < (α− ε)n, then d will not be reported by Algorithm 3 as an α-persistent item.

Proof: For such an item, the value of nd at the end of observation is nd = pd−G(τ) + 1. Let

f denote the probability that d is reported as α-persistent. We have:

f = Pr[nd +
1
τ
≥ T ]

= Pr[pd −G(τ) + 1 +
1
τ
≥ αn− 1

τ
]

= Pr[G(τ) ≤ (pd − αn) + 1 +
2
τ

]

= Pr[G(τ) ≤ pd − (α− ε)n+ 1]

≤ Pr[G(τ) ≤ 0] = 0

Lemma 2.3.3 The expected space taken by the S is O
(

1
εn

∑
d∈D(S) pd

)
, where D(S) is the set

of all distinct items in stream S. We assume that storing a tuple (d, nd, td) takes a constant

amount of space.

Proof: The space taken by S is a random variable, since the decision of whether or not to

allocate space to an item is a randomized decision. For item d, let random variable Zd be

defined as follows. Zd = 1 if the algorithm tracks d, i.e d ∈ S, and Zd = 0 otherwise.

Let Z =
∑
d∈D(S) Zd. If we assume that the space required for storing a single tuple (d, ·, ·)

in S is a constant number of bytes, say c, then the space used by S is cZ bytes. Now, for the

random variable Z, by linearity of expectation, we get:

E[Z] = E

 ∑
d∈D(S)

Zd

 =
∑

d∈D(S)

E[Zd] =
∑

d∈D(S)

Pr[Zd = 1] (2.1)

Pr[Zd = 0] = (1− τ)pd (2.2)

Using Taylor’s expansion,

e−2τ ≤ 1− 2τ + 4τ2/2

≤ 1− 2τ + τ = 1− τ (assuming τ ≤ 1/2)
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Using in Equation 2.2, we get:

Pr[Zd = 0] ≥ (e−2τ )pd = e−2τpd

Thus,

Pr[Zd = 1] = 1− Pr[Zd = 0] ≤ (1− e−2τpd)

≤ (1− (1− 2τpd))(using e−x > 1− x)

= 2τpd

Using in Equation 2.1, we get:

E[Z] ≤
∑

d∈D(S)

2τpd = 2τ
∑

d∈D(S)

pd =
4
εn

∑
d∈D(S)

pd

Discussion: The expression for the space complexity shows that the expected space re-

quired for an item d is proportional to pd/n. Note that pd can range from 1 till n, but in a

typical stream, the persistence of most items can be expected to be small, with only a few items

having a large persistence. Thus, in the typical case, for example, with a Zipfian distribution

of packet frequencies and persistence, the space taken by the sketch will be much smaller than

the number of distinct items in the input.

Space Complexity for Specific Distributions. Let P =
∑
d∈D(S) pd denote the sum of

the persistence values of all items in the stream. We now show that if the persistence values of

the different items followed a Zipfian distribution, then P = O(n), leading to a constant space

complexity, independent of the number of distinct items in the input.

Lemma 2.3.4 If the persistence of different items in D(S) followed a Zipfian distribution,

then the space complexity of the sketch is O(1
ε ).

Proof: Let ρk be the persistence of the kth most persistent item for k ∈ 1, 2, ..., |D(S)|. With

a Zipfian distribution, ρk = c
kβ

, for some c > 0 and β > 1. Since the persistence of an item is

bounded by n, ρ1 = c ≤ n. Let ζ(·) be the Reimann Zeta function.
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∑
d∈D(S)

pd =
∑

k≤|D(S)|

c

kβ
≤ c

∞∑
k=1

1
kβ

= cζ(β) ≤ nζ(β)

Thus, from Lemma 2.3.3, we have E[Z] ≤ 4
εnnζ(β) = 4ζ(β)

ε

By the Maclaurin-Cauchy test, we know for β > 1, the series represented by ζ(β) converges,

and is usually a small constant, which proves the lemma. For example, if β = 1.5, then

ζ(1.5) = 2.6. For this case, we get:
∑
d∈D(S) pd ≤ 2.6n, and thus, from Lemma 2.3.3, E[Z] < 11

ε .

Theorem 2.3.1 The above algorithms 9 and 3 can be used in an algorithm for tracking per-

sistent items in a fixed window with the following properties:

A. Each α-persistent item is reported with probability at least 1− δ.

B. No item d such that pd < (α− ε)n is reported.

C. The space complexity of the algorithm is O
(
P log (1/δ)

εn

)
, where P =

∑
d∈D(S) pd.

D. The processing time per stream element is O(log 1
δ ).

Proof: Algorithms 9 and 3 achieve most of the above properties. From Lemma 2.3.1, we get

that the probability of a persistent item not being reported is no more than e−2. The only task

now is to bring down the probability of a false negative to δ.

To achieve this, we run (1/2) ln 1
δ instances of Algorithm 9 in parallel, and return the union

of the items reported by all the instances. For an item that is persistent, it is not reported

only if it is missed by every instance. The probability that this happens is no more than(
e−2

)(1/2) ln 1
δ , which is δ. For an item d whose persistence is less than (α − ε)n, from Lemma

2.3.2, we see that the item is not returned by any instance, and hence will not be present in

aggregated result, proving property B.

Property C follows from Lemma 2.3.3, adding a multiplying factor of O(log 1
δ ). For the time

complexity (property D), we note that Algorithm 9 can be made to run in constant expected

time if the sketch S is organized as a hash table with the item identifier as the key.
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2.3.2 Sliding Windows

In this setting, we are interested only in the substream of elements that belong to the n most

recent timeslots. If c is the current timeslot, then the window of interest is Scc−n+1. Note that

n here does not represent the number of timeslots in the stream, but the number of timeslots

in the window. We now present an algorithm solving Problem 3. The intuition for the sliding

window algorithm is as follows.

Suppose we started a new fixed window data structure for each new timeslot. This would

suffice, since any sliding window query in the future will be covered by one of these fixed window

data structures. For now, suppose that St was the fixed window data structure that we start

from time t onwards (this will serve the window St+n−1
t ). At first glance, it seems like this

would be too much space, since the cost would be n times the space for a single fixed window

data structure.

The space can be reduced through the following observations: (1) when we start a fixed

window data structure at a particular timeslot t, say, only a few of the items (approximately a

τ fraction of the items) that arrive in timeslot t will be selected into this data structure; (2) for

those items d that were not selected into St in timeslot t, the tuple for d in St can be shared

with the tuple for d in St+1; (3) further, when the current timeslot is t, we can afford to discard

Sr for r ≤ (t− n), since these data structures will never be used in a future query.

Thus, the sketch used by our algorithm at time c is effectively ∪ci=c−n+1Si, where Si is the

fixed window sketch starting at timeslot i. Through observation (2), we reduce the space by

having a single tuple for d in Si,Si+1, . . . ,Sj such that j is the first timeslot in i, i + 1, . . . , j

where d was selected into the sketch.

The formal description of the algorithm for the Sliding Window model is presented in

Algorithms 4, 5, 6, and 7. The sketch S is a set of tuples of the form (d, t, nd,t, td,t), where d is

an item identifier, t is the timeslot when this tuple was created, nd,t is the number of timeslots

since t when d has reappeared, and td,t is some state that we maintain to eliminate counting

reoccurrences of d within the same timeslot. In the following discussion, we say “(d, t) belongs

in the sketch”, or “(d, t) ∈ S”, if there is a 4-tuple of the form (d, t, ·, ·) in the sketch. In our
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sketch, for any item d and timeslot t, there can be at most one tuple of the form (d, t, ·, ·).

Algorithm 4: Sliding-Window-Sketch-Initialize (m,n,N, α, ε, δ)
Input: Size of domain m; window size n; maximum number of slots N ; persistence

threshold α; parameter ε; error probability δ

1 Initialize the hash function h : ([1,m]× [1, N ])→ (0, 1);
2 S ← φ; τ ← 2

εn ;T ← (α− ε
2)n

Algorithm 5: Sliding-Window-Sketch-Update(d, t)
Input: d is an item; t is the timeslot of arrival

1 if (d, t) ∈ S then
2 return
3 end
// Consider starting a new tuple, tracking d from slot t onwards.

4 if h(d, t) < τ then
5 S ← S ∪ (d, t, 1, t)
6 end
7 foreach t′ such that (d, t′) ∈ S do
8 Let (d, t′, nd,t′ , td,t′) be the tuple corresponding to (d, t′)

// Incorporate (d, t) into this tuple if not been done yet

9 if td,t′ < t then
// d has not been seen in slot t by this tuple

10 nd,t′ ← nd,t′ + 1; td,t′ ← t

11 end
12 end

During the initialization phase of the algorithm, S is initialized to empty, τ to 2
εn , and T

to αn− εn
2 . When we want to add an element (d, t) to the sketch, there are two possible cases.

First, if there is an entry in the sketch of the form (d, t, ·, ·), then this element can be safely

ignored, since the same combination of item and timeslot has been observed earlier. Otherwise,

if (d, t) hashes to an appropriately small value (less than τ), then a new entry is created for

tracking d, starting from time t onwards, that will serve to answer queries on certain windows

that include t within them. Simultaneously, (d, t) is used to update each of the tuples in S that

track d. Whenever time advances, and the window slides forward from t to t + 1, all entries

(d, t′, ·, ·) in S such that t′ ≤ (t − n) are discarded, because stream windows of current and

future interest will not be served by this entry. Let ptd = pd(t− n+ 1, t) denote the persistence

of d over the window [t− n+ 1, t].
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Algorithm 6: Actions taken when timeslot changes from c− 1 to c

// Discard old items

1 Discard items (d, t, ·, ·) ∈ S where t ≤ (c− n)

Algorithm 7: Sliding-Window-Detect-Persistent-Items(c)
Input: c is the current timeslot. The window of interest is [c− n+ 1, c].

1 Let Scur be all tuples (d, t′, nd,t′ , td,t′) in S such that both the following conditions are
true: (A) t′ ≥ (c− n+ 1) and (B) There is no t′′ such that (d, t′′) ∈ S and
(c− n+ 1) ≤ t′′ < t′.

2 foreach tuple (d, ·, nd, td) ∈ Scur do
3 p̂cd ← nd + 1

τ

4 if p̂cd ≥ T then
5 Report d as a persistent item in the window
6 end
7 end

2.3.2.1 Correctness and Complexity

For a pair (d, t) where d is an item identifier and t is a time slot, (d, t) is said to be stored

in S at time c if there exists a tuple (d, t, ·, ·) in S at time c.

Lemma 2.3.5 Items that are far from persistent in the window are not reported:

At time c, if an item d has pcd < (α−εn), then d will not be reported as persistent in the window

in Algorithm 7.

Proof: Consider such an item d, where pcd < (α− εn). We analyze the instances when d was

processed by Algorithm 5. If d was never stored in the sketch from time c−n+1 onwards, then

there will not exist a tuple (d, t′, ·, ·) in S at time c, and d will not be reported by Algorithm 7.

Suppose at time c, there existed a tuple (d, t′, nd, td) in S, such that t′ ≥ (c− n+ 1). This

tuple was inserted into the sketch at time t′. From Algorithm 5, it can be seen that nd is equal

to the number of occurrences of d in timeslots t′, t′ + 1, t′ + 2, . . . , c. This number cannot be

more than pcd, and hence nd ≤ pcd < (α− ε)n.

In Algorithm 7, for item d, it must be true that:

p̂cd = nd +
1
τ
< (α− ε)n+

εn

2
= αn− εn

2
= T
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Since p̂cd < T , d will not be reported as persistent.

Lemma 2.3.6 Sliding Window False Negative: At time c, if an item d has pcd ≥ αn,

then the probability that this item will not be reported as α-persistent in the current window by

Algorithm 7 is no more than e−2.

Proof: Suppose that d was sampled into the sketch later than time (c−n), i.e., there exists a

tuple (d, t, nd, ·) such that t > (c−n). In such a case, Algorithm 7 selects the tuple (d, t′, nd, td)

such that (A) t′ > (c− n) and (B) there is no tuple (d, t′′, ·, ·) in S such that t′′ < t′. In other

words, t′ is the earliest timeslot in [c − n + 1, c] when a sketch for d was initialized. Thus, it

follows that from time c−n+ 1 onwards (inclusive), d was not selected into the sketch till time

t′. The number of times that d needs to occur in slots c− n+ 1, c− n+ 2, . . . till it is sampled

into S is G(τ) (the geometric random variable with parameter τ). The counter nd keeps track

of the number of times d occurred in different timeslots starting from slot t′ (inclusive). Since

d occurred in the window in a total of pcd distinct slots, nd = pcd −G(τ) + 1.

Pr[False Negative] = Pr[pcd −G(τ) + 1 +
1
τ
< T ]

In the proof of Lemma 2.3.1, it is shown that the above probability is no more than e−2 if

pcd ≥ αn, and the lemma follows.

2.3.3 Space Complexity

The following result is useful for the space complexity.

Lemma 2.3.7 A tuple (d, t) is stored in S at time c if and only if both the following conditions

are true:

A. t > (c− n)

B. h(d, t) < τ

Proof: Suppose (d, t) is stored in S at time c. From Algorithm 6, it is clear that t > (c− n),

since otherwise (d, t) would have been discarded from the sketch. This proves condition A.
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Also, in Algorithm 5, if h(d, t) ≥ τ , then (d, t) would never have been inserted into the sketch.

Thus, it must be true that h(d, t) < τ , proving condition B.

Now, suppose that both A and B were true. Then, it is clear that in Algorithm 5, (d, t) will

be inserted into the sketch when it first appears. Further, this tuple will never be discarded

from the sketch in Algorithm 6 since our current timeslot c satisfies c < (t+ n).

Lemma 2.3.8 Space Complexity: Let Zc denote the number of tuples in S at time c, and

D denote the set of all distinct items that appeared during timeslots c− n+ 1 till c. Then,

E[Zc] =
2
εn

∑
d∈D

pcd

Proof: First, it can be verified that in Algorithm 5, if the same tuple (d, t) occurs multiple

times, then the effect on the sketch is the same as if (d, t) occurred only once in the stream.

Thus we can ignore repeated arrivals of the same tuple (d, t).

For each tuple (d, t) that arrived, let random variable Zcd,t be defined as follows. Zcd,t is 1 if

tuple (d, t) is stored in S at time c. Let D(S) denote the set of all distinct tuples (d, t) in the

stream so far.

We have

Zc =
∑

(d,t)∈D(S)

Zcd,t

From Lemma 2.3.7, we have that Zcd,t = 0 if t ≤ (c−n). Thus, we can rewrite the above as:

Zc =
∑

{(d,t)|t>(c−n)}
Zcd,t (2.3)

To compute the expectation of Zc, we use linearity of expectation:

E[Zc] = E

 ∑
{(d,t)|t>(c−n)}

Zcd,t

 =
∑

{(d,t)|t>(c−n)}
E
[
Zcd,t

]
For a tuple (d, t) such that t > (c− n), Zcd,t is equal to 1 if it was sampled into the sketch

at time t i.e., if h(d, t) < τ . The probability of this event is τ = 2
εn . Let D denote the set of all

distinct items that appeared in the stream during a timeslot i such that (c− n) < i ≤ c.

E[Zc] =
∑

{(d,t)|t>(c−n)}
τ =

∑
d∈D

(pcd · τ) =
2
εn

∑
d∈D

pcd
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2.4 Evaluation

We evaluated our small space algorithm and contrasted its performance with that of a naive

(exact) algorithm, by running the two on the following three (one real, two synthetic) datasets

described below. The goal of our experiments is to show how the performance of our algorithm

varies with the skewness of persistence of the items appearing in a stream.

Dataset design:

• HeaderTrace: This is a real-world traffic trace dataset. The trace used had 885 million

packets collected during a 3-hour period from a large Internet backbone link (source:

CAIDA [24]). The data consists of timestamped packet headers, with the source and

destination addresses, in addition to other attributes. From this packet header trace, we

extracted a sequence of (destination IP address, timestamp) pairs which forms the input

data stream. We divided the entire trace into slots of 30 seconds (to obtain a trace of

360 slots). The sliding window length was set to 100 slots.

• Synthetic1: This is a synthetic dataset that comprised of 1,024,680,418 (timeslot,

itemID) tuples. The item-identifiers were from the universe {1, . . . , 4000000}, and the

trace was simulated for a period of 30 days, the length of each timeslot being 15 minutes.

Hence, there were 30·24·60/15 = 2880 distinct timeslots. We split the universe of size

4000000 in 10 disjoint groups, and defined a list F of 10 fractions (the constraint being∑10
i=1 Fi = 1) where Fi represented what fraction of the universe belongs to group i. We

also kept a list P of 10 fractions, where Pi indicated the persistence of Fi over the whole

trace of 2880 slots. The values of Fi’s and Pi’s are all listed in Table 2.1. As an example,

for i = 1, Fi = 0.01 and Pi = 0.95, which implies group 1 comprised of 1% of the items

of the universe (i.e., 40000 items), each of which will occur in 2880·0.95 = 2736 slots

on expectation. Note that, the way we assigned the values of Fi’s and Pi’s mimics the

real-life fact that the distribution of persistence is very skewed, so more than 50% of the

items in the universe occur in less than 3 slots (on expectation). In practice, we put an

item in group i in slot j ∈ {1, . . . , 2880} with probability Pi. Also, before generating

the actual tuples, we created a random permutation of the universe {1, . . . , 4000000} by
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FisherYates shuffle [47].

• Synthetic2: This is a synthetic dataset that comprised of 123,408,469 (timeslot, itemID)

tuples. Like Synthetic1, for this also, the item-identifiers were from the universe {1, . . . ,

4000000}, and the trace was simulated for 2880 distinct timeslots. It differs from Syn-

thetic1 in the values of Fi’s and Pi’s, and the difference is evident in Table 2.1. Note that,

for Synthetic2, 86% of the items in universe have a persistence of 0.001 only, whereas for

Synthetic1, 55% of the items in universe have that persistence. On the other hand, for

Synthetic1, 1% of the items in universe have a persistence of 0.95, whereas for Synthetic2,

0.1% of the items have that high persistence. This explains why the skewness of Syn-

thetic2 is about thrice that of Synthetic1, and the mean persistence of Synthetic2 is about

1
9

th of that of Synthetic1.

Table 2.1: Distribution of persistence for all datasets

Partition of universe Synthetic1 Synthetic2 HeaderTrace
Fi Pi Fi Pi

i = 1 0.01 0.95 0.001 0.95
i = 2 0.02 0.75 0.002 0.75
i = 3 0.03 0.55 0.003 0.55
i = 4 0.04 0.35 0.004 0.35
i = 5 0.05 0.25 0.005 0.25
i = 6 0.06 0.15 0.006 0.15
i = 7 0.07 0.1 0.007 0.1
i = 8 0.08 0.05 0.01 0.05
i = 9 0.09 0.01 0.1 0.01
i = 10 0.55 0.001 0.862 0.001∑10
i=1 Fi 1 1

Size of universe 4,000,000 4,000,000 2,047,953
Exp. packets 1,024,704,000 123,402,240

Actual packets 1,024,680,418 123,408,469 885,055,227
Mean persistence 0.089 0.01 0.0177

Third moment of persistence (m3) 0.0105 0.0014 0.0043
Variance of persistence (m2) 0.015 0.0019 0.006

Skewness of persistence (m3/m2
3/2) 5.67 17.17 9.28

There is no obvious choice on what should be a suitable duration of the timeslot, since

prior research has shown that the delay between successive botnet-related communications to
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the same destination can range from a few minutes to a few days. A duration of a few minutes

is reasonable, since many botnets have multiple events occurring within this time frame. For

example, Li et al [85] observed periodic botnet-related events about every half an hour. Rajab

et al [98] reported that the average “staying time” for bots that they monitored was about 25

minutes, and 90% of them lasted less than 50 minutes. Over a 24-hour window, the BRAT

project [106] reported probes by 8 fast-flux botnets which showed periodicity, the periods being

in the range of 1-10 minutes. Porras et al [97] showed that for iKeeB, the iPhone-based botnet, a

compromised iPhone runs a shell script once every 5 minutes. For the HeaderTrace dataset,

we finally decided on a duration of 30 seconds so that our 3 hour trace led to a sufficient

number of slots, and for the Synthetic1 and Synthetic2 datasets, we chose the length to be

15 minutes. This helped us evaluate the scalability of our algorithm with increasing number

of timeslots, and also to experiment with different slot-lengths. With the above setting of

parameters, for the HeaderTrace and the synthetic datasets, we had reasonably large number

of timeslots (360 and 2880 respectively) as well as a large number of packets per timeslot.

The algorithms were implemented in C++ using the STL extensions. For the hash functions

in the small space algorithm (Algorithm 5), we used an endian-neutral implementation of

the Murmur Hash algorithm [16], which is generally considered to generate high quality hash

outputs.

We obtained the ground truth about the persistence of individual items (IP addresses

for HeaderTrace) by running the naive algorithm over the input data streams. Note that,

although for the synthetic datasets, we determined which item will have how much persistence,

the actual data was generated by a probabilistic process, so we still needed to collect the actual

persistence values of the items. In the process, for the HeaderTrace dataset, we discovered

that a large fraction of the windows did not contain many persistent items. On such windows,

our algorithm will run in a space-efficient manner, but we did not consider these windows since

there would not be enough data for a fair comparison.

To simplify the presentation, on HeaderTrace, we focus on 11 specific “query” windows:

these are [1, 100], [26, 125], [51, 150], . . . , [251, 350]. On both the synthetic datasets, the query

windows are [1, 288], [289, 576], . . . , [2593, 2880], so on these two, the time-duration of the query
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window was 288·15/60 = 72 hours. We use window [a, b] to denote the window of all timeslots

starting from a till b (both endpoints included).

On HeaderTrace, we found that the cumulative distribution of the persistence values in

the dataset was highly skewed, for every query window that we tried. We present the CDF of

persistence for three out of the 11 query windows: [1, 100], [101, 200] and [201, 300] in Figure 2.1,

but all the 11 query windows showed similar pattern. For example, in the [101, 200] window,

more than 50% IP addresses occur in 1 slot only, and 95% of the IP addresses occur in 20 or

less slots. This confirms the utility of an algorithm like ours, which requires less space when

items have lower average persistence. We made the distribution of Synthetic1 less skewed

(Figure 2.2) than that of HeaderTrace (skewnesses are respectively 5.67 and 9.28, as shown

in Table 2.1), to construct Synthetic1 as an adversarial input dataset, and found the results

for HeaderTrace better than those for Synthetic1. In Figure 2.2, we present the CDF for

only one query window as the distributions are identical across all windows, because of the

way the dataset is generated. Then again, we constructed Synthetic2 as the dataset with

highest skew (17.17, as in Table 2.1) of all three, and thus it shows some improvement over

Synthetic1, as we explain later.

Metrics: The following metrics were used. For parameter α, an item that is not α-

persistent is called “transient”.

The False Negative Rate (FNR) is defined as the ratio of the number of items that were

α-persistent, but were not reported by the small space algorithm, to the total number of α-

persistent items in the window.

The False Positive Rate (FPR) is defined as the ratio of the number of transient items that

were reported as persistent by the algorithm, to the total number of transient items.

The Space Compression (SC) is defined as the ratio of the number of tuples stored by the

naive algorithm to the number of tuples stored by the small space algorithm.

The Physical Space Compression (PSC) is defined as the maximum resident set size of

the naive algorithm to that of the small-space algorithm.

The notion of Space Compression (SC) is a logical one, and for the sliding window version

of the problem (Problem 3), we were interested in the number of tuples of the form (d, t, ·, ·),
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as referred to in Algorithms 5 to 7.

In the actual implementation, for each distinct item d, we maintained a sorted list (of

variable size) of (t′, nd,t′) tuples, ordered by t′, where nd,t′ indicates in how many distinct slots

d has appeared since its appearance in slot t′. The sorted list helped us to check by binary-

search if an item d has occurred in a given slot t′. When d appears in a slot t′ it has not

appeared in before, the tuple (t′, nd,t′) is initialized only if h(d, t′) < τ . Note that td,t′ - the

last timeslot d has appeared in since its appearance in t′, does not depend on t′, and hence we

maintained a single copy of this variable for each item d.

For computing the Physical Space Compression (PSC), for each combination of α and ε,

we actually created a new process so that the resident set is created afresh. We expect the

Physical Space Compression for (α, ε′) to be higher than that for (α, ε) when ε′ > ε (because τ

is lower for ε′), but we found that because of the way memory allocation algorithms work, if the

algorithm runs first for (α, ε) and then for (α, ε′) (using the same process), then, the memory

allocated for (α, ε) is enough to accomodate the algorithm for (α, ε′), and the space-saving due

to (α, ε′) does not get reflected.

Note that both the numerator and the denominator of each metric depend on the query

window [c− n+ 1, c] (n is the window length). To measure the ratios, we ran the small-space

algorithm on the query windows defined previously and in each window, recorded all the items

that were marked as persistent by the algorithm. The only source of randomness in each run

is the output of the Murmur Hash function and we ran each simulation thrice using different

seeds (we saw very minor variation in the results when different seeds were used.) Thus, for

each parameter setting we had 11 × 3 data points for HeaderTrace, and 10 × 3 data points

for both the synthetic datasets, and in each we recorded the false positives, the false negatives,

and the number of tuples that were tracked. The ratios computed (by comparing to the naive

algorithm) are then averaged across all the runs.

Observations along metrics:

For every value of α, the False Negative Rate (Figure 2.4a for HeaderTrace, Figure 2.5a

for Synthetic1 and Figure 2.6a for Synthetic2) increases as ε increases, which is expected.

However, although Lemma 2.3.6 bounds the False Negative Rate to 1
e2

= 13%, the algorithm
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Figure 2.1: CDF of persistence values from 3 windows for the HeaderTrace dataset
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Figure 2.2: CDF of persistence values from the [1,288] window for the Synthetic1 dataset

performed much better in practice - we found that even for α = 0.3 and ε = 0.21, the FNR

was as low as 2% for HeaderTrace and ∼3.5% for both the synthetic datasets. Note that ε
α

is a relative measure of error tolerance in α, which in this case is as high as 70%. The highest

FNR we ever got was less than 10% for HeaderTrace, less than 12% for Synthetic1 and

12.7% for Synthetic2. However, for all the three datasets, this was for the highest setting of

α (α = 0.9) - the number of false negatives for this were higher than for the other settings, for

similar values of ε. One possible reason is that for α = 0.9, an item that was 0.9-persistent

had persistence very close to 0.9n. Whereas, many of the items that were 0.3-persistent had

persistence values that were much larger than 0.3n. Items that have persistence values close to
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Figure 2.3: CDF of persistence values from the [1,288] window for the Synthetic2 dataset

the threshold, but higher than it, have a greater chance of not being reported than items whose

persistence values are far above the threshold. Hence, the false negative ratio for α = 0.9 is a

little higher.

The False Positive Rate, similar to the False Negative Rate, shows (Figure 2.4b for Head-

erTrace, Figure 2.5b for Synthetic1 and Figure 2.6b for Synthetic2) an increasing trend as

ε increases. The maximum FPR was 2.69% for HeaderTrace and 2.2% for Synthetic2 (both

for α = 0.3 and ε = 0.21). Moreover, all of Figures 2.4b, 2.5b and 2.6b show that for the same

value of ε, the FPR is lower for higher values of α. The possible reason is that when α is very

high (e.g. 0.9), most items have persistence much lower than αn (as is evident from the CDFs

in Figures 2.1 and 2.2), hence are very unlikely to cross the threshold T in Algorithm 7.

The (Logical) Space Compression increases linearly with ε (Figures 2.4c for HeaderTrace,

2.5c for Synthetic1 and 2.6c for Synthetic2), and we found the Space Compression is close

to 1
τ = εn

2 , for all values of α and all three datasets. This is expected since the naive algorithm

creates a new tuple for an item everytime it appears in a different slot - where the small-space

algorithm creates a tuple with probability τ only. For α = 0.9, with ε = 0.63, the logical

space compression was as high as 32 for HeaderTrace, and as high as 91 for Synthetic1 and

∼100 for Synthetic2. The higher Space Compression for the synthetic datasets compared to

HeaderTrace is justified by the larger value of the window length n (288 as opposed to 100).

For higher values of α, we could achieve better Space Compression as the tolerance ε could be
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(b) Variation of FPR with α and ε
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Figure 2.4: Trade-off between accuracy and space for the small-space algorithm over sliding windows
for the HeaderTrace dataset. Each point in each plot is an average from 33 data points - 3 runs over
11 query windows each. Note that the Y-axis is different for each plot. Also, for each value of α, the
values of ε range from 0.1α to 0.7α.

made higher while keeping the false positives and the false negatives small enough.

Like its logical counterpart, the Physical Space Compression also increases with ε (Fig-

ure 2.4d for HeaderTrace, 2.5d for Synthetic1 and 2.6d for Synthetic2), and for each

distinct value of α, the Physical Space Compression grows almost linearly with ε. For higher

values of α, we could achieve better Space Compression as the tolerance ε could be made higher.

While the size of the HeaderTrace dataset was 58 GB, the maximum resident set size of the

naive algorithm went upto 3 GB (at the query window [251,350]), whereas for typical parame-

ters like α = 0.5 and ε = 0.35, the small-space algorithm took less than 1
5

th (600 MB) memory

(on average) compared to the naive algorithm. For Synthetic1, the dataset size was 12 GB,

the maximum resident set size of the naive algorithm went upto 1.8 GB, whereas for α = 0.5
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Figure 2.5: Trade-off between accuracy and space for the small-space algorithm over sliding windows
for the Synthetic1 dataset. Each point in each plot is an average from 30 data points - 3 runs over 10
query windows each. The Y-axis is different for each plot. For each value of α, the values of ε range
from 0.1α to 0.7α.

and ε = 0.35, the small-space algorithm took space between 350 and 500 MB. For Synthetic2,

the dataset size was 1.5 GB, the maximum resident set size of the naive algorithm went upto

736 MB, whereas for α = 0.5 and ε = 0.35, the small-space algorithm took space between 140

and 200 MB.

Variation with ε, seed and query window: Figures 2.7a through 2.9c take a closer look at

some of the absolute numbers (actual memory used, number of true and false positives, number

of true and false negatives) rather than ratios for the Synthetic1 dataset, and show how they

vary with ε, the seed value of the random number generator and the different query windows.

Figure 2.7a shows how the physical memory (in KB) varies with ε for α = 0.5 and the query

window [2593, 2880]. Since the memory taken by the naive algorithm does not depend on α or
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Figure 2.6: Trade-off between accuracy and space for the small-space algorithm over sliding windows
for the Synthetic2 dataset. Other details are same as Synthetic1.

ε, it is constant throughout at 1.86 GB, and the memory taken by the small space algorithm

falls from 800 MB to 500 MB as ε increases from 0.05 to 0.35.

In Figure 2.7b, the actual number of persistent items in the window [2593, 2880] is constant

at 235,353; and we can see that with increasing ε, the number of true positives reduces only a

little, remaining very close to the number of actual persistent items throughout. The number

of false positives is as low as ∼3,600 when ε = 0.05, and for typical values of ε (e.g., 0.15) that

will probably be used in practice for a problem like this ), the number of false positives is ∼25k.

In Figure 2.7c, the actual number of transient items in the window [2593, 2880] is constant at

∼2.1m; and we can see that with increasing ε, the number of true negatives reduces only a little,

remaining very close to the number of actual transient items throughout. The number of false

negatives is as low as ∼2,200 when ε = 0.05, and even when ε is as high as 0.35, the number
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of false negatives increases only to ∼14k. Note that, for many practical applications, it is

important to keep the number/rate of false negatives much lower compared to the number/rate

of false positives, and comparing Figure 2.7b and 2.7c shows that our algoithm meets that

criterion.

Figure 2.8a shows how the physical memory (in KB) varies with the seed of the random

number generator for α = 0.5, ε = 0.15 and the query window [2593, 2880]. Since the memory

taken by the naive algorithm does not depend on the seed of the random number generator, it

is constant throughout at 1.86 GB, and the memory taken by the small space algorithm also

remains practically constant at ∼593MB, which justifies averaging the actual memory footprint

over the 3 different seed values.

In Figure 2.8b, the actual number of persistent items in the window [2593, 2880] is constant

at 235,353; and we can see that with change in the seed, the number of true positives remains

practically constant at ∼227k, and so does the number of false positives at ∼26k.

In Figure 2.8c, the actual number of transient items in the window [2593, 2880] is constant

at ∼2.1m; and we can see that with change in the seed, the number of true negatives remains

practically constant at ∼2.07m, and so does the number of false negatives at ∼7.8k.

Figure 2.9a shows how the physical memory (in KB) varies with the query window for

α = 0.5 and ε = 0.15, the seed of the random number generator being 10. Unlike Figure 2.7a or

Figure 2.8a, the physical memory depends on the number of distinct items in the window, and

although we generated the items uniformly across the slot range [1, 2880], we see it increased

gradually with increasing slot number. However, while the space taken by the naive algorithm

varied from 1.5 GB to 1.86 GB, the space taken by the small-space algorithm varied from ∼400

MB to ∼600MB.

Figure 2.9b shows how the number of persistent items varies with the query window for α =

0.5 and ε = 0.15, the seed of the random number generator being 10. Since for the Synthetic1

dataset, each persistent item was distributed uniformly across the slot range [1, 2880], the actual

number of persistent items across the different windows was alomost constant at ∼235k; and

we can see that with change in the query window, the number of true positives also remains

practically constant at ∼227k, and so does the number of false positives at ∼26k.
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Figure 2.9c shows how the number of transient items varies with the query window for

α = 0.5 and ε = 0.15, the seed of the random number generator being 10. For the Synthetic1

dataset, like the persistent items, each transient item was also distributed uniformly across

the slot range [1, 2880], hence the actual number of transient items across the different query

windows is practically constant at ∼2.1m; and we can see that with change in the query window,

the number of true negatives remains practically constant at ∼2.07m, and so does the number

of false negatives at ∼7.8k.

The small variation in the actual memory used, the number of true and false positives and

the number of true and false negatives by the small-space algorithm, as shown in Figures 2.8a

through 2.9c justifies our averaging of these quantities across the different seed values and

query windows.

Comparsion among three datasets: The FPR for HeaderTrace was much lower than

that for Synthetic1 at comparable points, e.g., at α = 0.3, ε = 0.21 and in comparable query

windows, for Synthetic1, the FPR is 16%, whereas for HeaderTrace, the FPR is 2.7%.

For Synthetic1, at an identical query window, there are ∼300k false positives out of ∼1931k

transient items, and for HeaderTrace, there are ∼21k false positives out of ∼802k transient

items. The lower FPR for HeaderTrace probably arises out of the fact that the CDF curve

(Figure 2.1) grows more steeply than the CDF curve for Synthetic1 (Figure 2.2), so the

fraction of items whose persistence come anywhere close to 0.3 is much less. To demonstrate

the difference among the three datasets, we present the 93rd percentile value of persistence

for each. For HeaderTrace, there are total ∼829k distinct items in the window [251,350],

but ∼770k of these items occur in 10 or less slots out of 100, i.e., the 93rd percentile value of

persistence is 10%. As a comparison, for Synthetic1, there are total ∼2330k distinct items in

the window [2593, 2880], but ∼2167k of these items occur in 161 or less slots out of 288 (161/288

= 56%), i.e., the 93rd percentile value of persistence is 56%. But then again, for Synthetic2,

the FPR improves significantly over Synthetic1 - for α = 0.3 and ε = 0.21, Synthetic2 gives

an FPR of 2.2% in pretty much all query windows - so the FPR becomes comparable to that of

HeaderTrace. To compare with Synthetic1, there are ∼1394k distinct items in the window

[2593, 2880], but ∼1296k of them occur in 28 or less slots out of 288, i.e., the 93rd percentile



www.manaraa.com

50

value of persistence is 9.7% (see Figure 2.3). The reason for lower FPR for Synthetic2 is

similar to that for HeaderTrace. This shows that the FPR improves with skewness of the

data, and our algorithm in fact performs well for datasets with realistic skewness.

The physical memory compression ratio is less for Synthetic1 than for HeaderTrace for

similar reasons - many transient items find room into the sketch for having persistence close

to the threshold. Although the skew for Synthetic2 is more than that of Synthetic1, it has

similar values of logical and physical memory compressions since the proportion of items from

the universe that have similar persistence values bear similar ratios to each other, e.g., for

Synthetic1, 1% of the items have persistence 0.95 and 2% have persistence 0.75; whereas for

Synthetic2, 0.1% of the items have persistence 0.95 and 0.2% have persistence 0.75 (first two

rows of Table 2.1).

In Lemma 2.3.8, we showed that for a given value of ε and length of sliding window (n), the

expected number of tuples in the sketch is proportional to the sum of the persistence values of

all items appearing in the window (
∑
d∈D p

c
d). Hence, the physical memory taken should also

vary with the sum of the persistence values. We present the following example to demonstrate

this: in the [1, 288] window, the number of distinct items for Synthetic1 and Synthetic2

are respectively ∼2.33m and ∼1.39m, and the sum of persistence values for Synthetic1 and

Synthetic2 respectively are about 20.47 × 104 and 1.4 × 104. For α = 0.5 and ε = 0.35,

the memory footprints by the small-space algorithm for this combination of parameters for

Synthetic1 and Synthetic2 are respectively 353 MB and 142 MB, so Synthetic1 takes

about 2.5 times more memory than Synthetic2.
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Figure 2.7: The variation of the physical memory taken, the number of true positives, false positives,
true negatives and false negatives with ε for the Synthetic1 dataset. All the plots are for α = 0.5 and the
query window [2593, 2880]. So, each point in each plot is an average from 3 data points corresponding
to the 3 different seed values (10, 20, 30). Note that the horizontal lines in the three plots represent
respectively the actual memory taken by the naive algorithm, the actual number of persistent items and
the actual number of transient items, all measured in the same query window, and hence does not vary
with ε. The Y-axis is different for each plot. The values of ε range from 0.1α to 0.7α.
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Figure 2.8: The variation of the physical memory taken, the number of true positives, false positives,
true negatives and false negatives with the seed of the random number generator for the Synthetic1
dataset. All the plots are for α = 0.5, ε = 0.15 and the query window [2593, 2880]. Note that the
horizontal lines in the three plots represent respectively the actual memory taken by the naive algorithm,
the actual number of persistent items and the actual number of transient items, all measured in the
same query window, and hence does not vary with the seed. The Y-axis is different for each plot. The
values of the seed used are 10, 20 and 30.



www.manaraa.com

53

288 576 864 1152 1440 1728 2016 2304 2592 2880
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

6

Query window

P
hy

si
ca

l M
em

or
y

 

 

Small Space
Naive

(a) Variation of actual memory used with
query window

288 576 864 1152 1440 1728 2016 2304 2592 2880
0

0.5

1

1.5

2

2.5
x 10

5

Query window
#P

er
si

st
en

t i
te

m
s

 

 

#True Positives
#False Positives
#Actual Persistent Items

(b) Variation of number of true positives and
false positives with query window

288 576 864 1152 1440 1728 2016 2304 2592 2880
0

0.5

1

1.5

2

2.5
x 10

6

Query window

#T
ra

ns
ie

nt
 it

em
s

 

 

#True Negatives
#False Negatives
#Actual Transitent Items

(c) Variation of number of true negatives and
false negatives with query window

Figure 2.9: The variation of the physical memory taken, the number of true positives, false positives,
true negatives and false negatives with the query window for the Synthetic1 dataset. All the plots
are for α = 0.5, ε = 0.15 and seed = 10. Note that the horizontal lines in the three plots represent
respectively the actual memory taken by the naive algorithm, the actual number of persistent items
and the actual number of transient items - the first one shows slight increase with the progress of time
(increasing query window number) but the other two are practically constant. The Y-axis is different
for each plot. The query windows are [1, 288], [289, 576], . . . , [2593, 2880] and the values on the X-axis
are the endpoints of the query windows.
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2.5 Related Work

A large body of literature on network anomaly detection has focused on detecting volume-

based anomalies, i.e., tracking IPs which send or receive an unusally large volume of traffic

over an interval of time. While volume-based anomaly detection is relevant for Denial-of-

Service type attacks like SYN flood [108], UDP flood [109], Ping flood or P2P attacks, there

are many “stealthy” attacks [54], which can bypass the radar by never sending traffic in large

volume, yet remaining active over long windows in time, and probing the target network/host

once in a while. For example, port scans [102] look for open ports on remote hosts that have

applications with known vulnerabilities deployed on those ports; bots installed on compromised

hosts in a botnet keep on communicating with the C&C server, etc. Our work differs from these

in that persistent items may not result in large volumes of traffic and may escape detection by

a volume-based system.

It is interesting to compare how algorithmic techniques for identifying heavy-hitters (or “fre-

quent items”) may work for the problem of identifying persistent items. Broadly, the techniques

in the literature can be classified into “counter-based”, “quantile algorithms”, “sketches”, or

“random sampling-based” (see [31]). Counter-based techniques such as the Misra-Gries algo-

rithm [89], and the “Space-Saving” algorithm [88] rely on maintaining per-item counters for

counting the number of occurrences of each item that has been currently identified as being

frequent; these counters are occasionally decremented to ensure that the space taken by the

data structure is small. The difficulty in using this technique for our problem is that it is not

easy to ensure that re-occurrences of the same item within a timeslot have no effect on the

system state. For example, in the Misra-Gries algorithm, if there is a decrement of the counters

between two occurrences of an item within the same timeslot, it seems hard to ensure that the

second occurrence has no effect on the system state, especially given that the increment due to

the first occurrence may have disappeared from the system (due to the decrement). The same

argument is true for Lossy Counting too [87]. Quantile-based algorithms such as Greenwald

and Khanna, or [62], the q-digest [100] view the space of all items as being a bijection with

the set of integers, and associate counts with different ranges in this space of all items. In
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the q-digest algorithm, there are no decrements to these counters, so one may use “distinct

counters” such as those by Flajolet-Martin [51], or Gibbons and Tirthapura [57], or Kane,

Nelson, and Woodruff[70], instead of regular counters. Such an approach based on maintaining

distinct counters would not only be more complex than our approach, but also likely have a

greater space complexity, since maintaining distinct counters with a relative error of ε requires

Ω(1/ε2) space [68]. The sketch approach, such as count-sketch [28] or count-min sketch [36] also

maintains multiple counters, each of which is the sum of many random variables. Replacing

each such counter with a distinct counter leads to its own set of difficulties, one of which is the

space complexity of distinct counting, explained above, and the other being the fact that each

distinct counter is only approximate (exact distinct counting necessarily requires large space

[13]), while the analyses in [28] and [36] rely on the different counters in the data structure

being exact.

Finally, our algorithm is inspired by the random sampling approaches based on the “sample

and count” scheme of Alon et al. [13, 12] and the “sticky sampling” algorithm of Manku and

Motwani [87]. Both these algorithms use the following idea: “sample a random element in the

stream, and track reoccurrences of this element exactly”. In these works, the idea was applied

to a different context than ours – sample and count was applied to track the size of a self-join

in limited storage, and sticky sampling was used in the identification of heavy hitters using

limited space. Our algorithm has the following technical differences when compared with the

above works. The sampling of an item is done using a hash function that is based on the

item identifier and the timeslot in which it arrived in. This hash-based sampling avoids giving

greater sampling probability to an item if it occurs multiple times within the same timeslot.

Further, reoccurrences are tracked in such a way that we do not overcount if the same item

appears again in the same timeslot. In addition, we show how to handle sliding windows using

nearly the same space, while the above works do not address the context of sliding windows.

A distinguishing aspect of our work on sliding windows is that while the extension to sliding

windows often requires asymptotically greater space than for the infinite window case (for

example, see Arasu and Manku [17]), in our case the space complexity increases only by a

factor of two.
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Persistence is exploited to detect botnet traffic in [59], using an algorithm that tracked the

state of every distinct item that arrived within the sliding window. Hence the memory used is

of the order of the number of distinct items times the window size, which is potentially very

high. In contrast, our algorithm tracks persistent items using much smaller space, while giving

up some accuracy.

There has been much work in estimating various properties of the frequency distribution

of stream items, including the frequency moments of a stream [13, 112, 70], heavy-hitters

[87, 50, 36, 84], and the entropy [83, 27, 94]. Unlike the set of persistent items, all the above

properties depend only on the frequency distribution of items in the stream – they are unaffected

by re-ordering of the stream elements, or by changing the times at which the elements arrive.

In contrast, the set of persistent items in a stream is affected by the time and order in which

elements arrive.

In a recent work on a temporal property of a stream, Chen et al [30] addressed the problem

of tracking long-duration flows from network streams. They identified flows for which the

difference of timestamps between the first and the last packet in the flow exceed some threshold

d. A flow might continue for a long duration and yet the total number of bytes sent in the flow

may not be high enough to be detected by the heavy-hitter algorithms; whereas some other

flow of shorter duration might qualify as a heavy-hitter because it sends many more bytes.

Clearly, a long-lived flow is not necessarily persistent.

2.6 Conclusion

We formulated the problem of detecting persistent items in a data stream. Our lower bound

result shows that an exact algorithm for the problem, which reports all persistent items, would

need a prohibitively high memory, and is therefore impractical. Subsequently, we presented an

approximate formulation of the problem that explores a tradeoff between space and accuracy

in identifying persistent items. Allocating more memory leads to more accurate answers and

this allows operators to tune their systems appropriately depending on the amount of resources

available.

By running simulations of both the naive (exact) and small space algorithms on a real as
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well as two synthetic traffic datasets with different skewness, we demonstrate that our algorithm

works very well in practice: for the real trace, it uses upto 85% less space than the naive (exact)

algorithm and incurs a false positive rate (and false negative rate) of less than 1% (and 4%

respectively) for typical values of the parameters. We also see that false positive rate never

exceeds 3% for any parameter setting, while the false negative rate stays below 5% for all but

the most aggressive thresholds for persistence. For the synthetic trace with low skewness, the

small-space algorithm uses upto 80% less space than the naive one, the false positive rate is

less than 2% and the false negative rate is about 4% for typical parameter values (e.g., α = 0.5

and ε = 0.15). The maximum false positive rate is less than 3% for the real trace and the

synthetic trace with higher skewness. The empirical false positive and false negative rates,

for most parameters, are much better than the analytical bounds: and our experiment across

the three different datasets shows that the false positive rate improves for data with higher

skewness.
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CHAPTER 3. Identifying Correlated Heavy-Hitters over a Data Stream

In this chapter, we consider online mining of correlated heavy-hitters (CHH) from a data

stream. Given a stream of two-dimensional data, a correlated aggregate query first extracts a

substream by applying a predicate along a primary dimension, and then computes aggregates

along a secondary dimension. We consider queries of the following form: “In a stream S of (x, y)

tuples, on the substream H of all x values that are heavy-hitters, maintain those y values that

occur frequently with the x values in H”. This query arises naturally in situations where we

need to track not only the identity of frequently occurring items in a stream, but also additional

information associated with these items along other dimensions. Prior work on heavy-hitters

in streams have focused solely on identifying the heavy-hitters on a single dimensional stream,

and these yield little information about correlated heavy-hitters. We formulate an approximate

version of the CHH problem, and present an algorithm for approximately tracking CHHs on

a data stream. The algorithm is easy to implement and uses workspace which is orders of

magnitude smaller than the stream itself. We present provable guarantees on the maximum

error estimates, as well as experimental results that demonstrate the space-accuracy trade-off

on a large stream of IP packet headers from a backbone network link.

3.1 Introduction

Correlated aggregates ([15, 55, 37]) reveal interesting interactions among the different at-

tributes of a multi-dimensional dataset. They are useful when we are interested in finding an

aggregate on an attribute over a subset, where the subset is defined by a selection predicate

on a different attribute of the same dataset. On a stored database, a correlated aggregate can

be computed by considering one dimension at a time, using multiple passes through the data.
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However, for streaming data, we often do not have the luxury of making multiple passes over

the dataset, the data may be too large to store and it is desirable to have an algorithm that

works in a single pass through the data. Moreover, even the substream derived by applying

the query predicate along the primary dimension can be too large to store, let alone the whole

dataset.

We consider the identification of correlated heavy-hitters (CHHs) from massive data streams.

We first define the notion of a heavy-hitter on a data stream (this is considered in prior work,

such as [87, 89, 29, 35]), and then define our notion of correlated heavy-hitters. Given a se-

quence of single-dimensional records (a1, a2, . . . , aN ), where ai ∈ {1, . . . ,m}, the frequency of

an item i is defined as |{aj |aj = i}|. Given a user-input threshold φ ∈ (0, 1), any data item i

whose frequency is at least φN is termed as a φ-heavy-hitter. We first consider the following

problem of exact identification of CHHs.

Problem 4 Exact Identification of Correlated Heavy Hitters. Given a data stream

S of (x, y) tuples of length N (x and y will henceforth be referred to as the “primary” and

the “secondary” dimensions, respectively), and two user-defined thresholds φ1 and φ2, where

0 < φ1 < 1 and 0 < φ2 < 1, identify all (d, s) tuples such that:

fd = |{(x, y) ∈ S : (x = d)}| > φ1N

and

fd,s = |{(x, y) ∈ S : (x = d) ∧ (y = s)}| > φ2fd

The above aggregate can be understood as follows. The elements d are heavy-hitters in the

traditional sense, on the stream formed by projecting along the primary dimension. For each

heavy-hitter d along the primary dimension, there is logically a (uni-dimensional) substream

Sd, consisting of all values along the secondary dimension, where the primary dimension equals

d. We require the tracking of all tuples (d, s) such that s is a heavy-hitter in Sd.

Many stream mining and monitoring problems on two-dimensional streams need the CHH

aggregate, and cannot be answered by independent aggregation along single dimensions. For

example, consider a network monitoring application, where a stream of (destination IP address,
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source IP address) pairs is being observed. The network monitor maybe interested not only

in tracking those destination IP addresses that receive a large fraction of traffic (heavy-hitter

destinations), but also in tracking those source IP addresses that send a large volume of traffic

to these heavy-hitter destinations. This cannot be done by independently tracking heavy-

hitters along the primary and the secondary dimensions. Note that in this application, we are

interested not only in the identity of the heavy-hitters, but also additional information on the

substream induced by the heavy-hitters.

In another example, in a stream of (server IP address, port number) tuples, identifying

the heavy-hitter server IP addresses will tell us which servers are popular, and identifying

frequent port numbers (independently) will tell us which applications are popular; but a network

manager maybe interested in knowing which applications are popular among the heavily loaded

servers, which can be retrieved using a CHH query. Such correlation queries are used for network

optimization and anomaly detection [39].

Another application is the recommendation system of a typical online shopping site, which

shows a buyer a list of the items frequently bought with the ones she has decided to buy.

Our algorithm can optimize the performance of such a system by parsing the transaction logs

and identifying the items that were bought commonly with the frequently purchased items.

If such information is stored in a cache with a small lookup time, then for most buyers, the

recommendation system can save the time to perform a query on the disk-resident data.

Similar to the above examples, in many stream monitoring applications, it is important to

track the heavy-hitters in the stream, but this monitoring should go beyond simple identification

of heavy-hitters, or tracking their frequencies, as is considered in most prior formulations of

heavy-hitter tracking such as [34, 87, 89, 29, 49]. In this work we initiate the study of tracking

additional properties of heavy-hitters by considering tracking of correlated heavy hitters.

3.1.1 Approximate CHH

It is easy to prove that exact identification of heavy-hitters in a single dimension is impos-

sible using limited space, and one pass through the input. Hence, the CHH problem is also

impossible to solve in limited space, using a single pass through the input. Due to this, we
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consider the following approximate version of the problem. We introduce additional approxi-

mation parameters, ε1 and ε2 (0 < ε1 ≤ φ1

2 , 0 < ε2 < φ2), which stand for the approximation

errors along the primary and the secondary dimensions, respectively. We seek an algorithm

that provides the following guarantees.

Problem 5 Approximate Identification of Correlated Heavy-Hitters. Given a data

stream S of (d, s) tuples of length N , thresholds φ1 and φ2:

1. Report any value d such that fd > φ1N as a heavy-hitter along the primary dimension.

2. No value d such that fd < (φ1 − ε1)N , should be reported as a heavy-hitter along the

primary dimension.

3. For any value d reported above, report any value s along the secondary dimension such

that fd,s > φ2fd as a CHH.

4. For any value d reported above, no value s along the secondary dimension such that

fd,s < (φ2 − ε2)fd should be reported as a CHH occurring alongwith d.

With this problem formulation, false positives are possible, but false negatives are not. In

other words, if a pair (d, s) is a CHH according to the definition in Problem 4, then it is a

CHH according to the definition in Problem 5, and will be returned by the algorithm. But

an algorithm for Problem 5 may return a pair (s, d) that are not exact CHHs, but whose

frequencies are close to the required thresholds.

3.1.2 Contributions

Our contributions are as follows.

• We introduce the notion of exact and approximate CHHs, and present a small-space ap-

proximation algorithm for identifying approximate CHHs in a single pass. Prior literature

on correlated aggregates have mostly focused on the correlated sum, and these techniques

are not applicable for CHH. Our algorithm for approximate CHH identification is based

on a nested application of the Misra-Gries algorithm [89].
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• We provide a provable guarantee on the approximation error. We show that there are no

false negatives, and the error in the false positives is controlled. When greater memory

is available, this error can be reduced. The space taken by the algorithm as well as the

approximation error of the algorithm depend on the sizes of two different data structures

within the algorithm. The total space taken by the sketch is minimized through solv-

ing a constrained optimization problem that minimizes the total space taken subject to

providing the user-desired error guarantees.

• We present results from our simulations on a stream of more than 1.4 billion (50 GB

trace) anonymized packet headers from an OC48 link (collected by CAIDA [25]). We

compared the performance of our small-space algorithm with a slow, but exact algorithm

that goes through the input data in multiple passes. Our experiments revealed that even

with a space budget of a few megabytes, the average error statistics of our algorithm were

very small, showing that it is a viable algorithm in practice.

Along each dimension our algorithm maintains frequency estimates of mostly those values

(or pairs of values) that occur frequently. For example, for every destination that sends a

significant fraction of traffic on a link, we maintain mostly the sources that occur frequently

along with this destination. Note that the set of heavy-hitters along the primary dimension can

change as the stream elements arrive, and this influences the set of CHHs along the secondary

dimension. For example, if an erstwhile heavy-hitter destination d no longer qualifies as a

heavy-hitter with increase in N (and hence gets rejected from the sketch), then a source s

occurring with d should also be discarded from the sketch. This interplay between different

dimensions has to be handled carefully during algorithm design.

Roadmap: The rest of this paper is organized as follows. In Section 3.2, we present related

work, followed by the Algorithm in Section 3.3, and its proof of correctness in Section 3.4.

The analysis of the space complexity and the setting of certain important parameters of the

algorithm is discussed in Section 3.5, followed by experimental results in Section 4.5.
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3.2 Related Work

In the data streaming literature, there is a significant body of work on correlated aggregates

([15, 55, 37]), as well as on the identification of heavy hitters ([87, 89, 29, 35]). See [32] for a

recent overview of work on heavy-hitter identification. None of these works consider correlated

heavy-hitters.

Estan et al. [48] and Zhang et al. [118] have independently studied the problem of iden-

tifying heavy-hitters from multi-dimensional packet streams, but they both define a multidi-

mensional tuple as a heavy-hitter if it occurs more than φN times in the stream, N being the

stream size – the interplay across different dimensions is not considered.

Gehrke et al [55] addressed correlated aggregates where the aggregate along the primary

dimension was an extremum (min or max) or the average, and the aggregate along the secondary

dimension was sum or count. For example, given a stream S of (x, y) tuples, their algorithm

could approximately answer queries of the following form: “Return the sum of y-values from

S where the corresponding x-values are more than twice the minimum of all x-values”. They

maintained a data structure called adaptive histograms, but these did not come with provable

guarantees on performance. Ananthakrishna et al [15] presented algorithms with provable error

bounds for correlated sum and count. Given a stream S of (x, y) tuples, their algorithms could

answer, approximately, prefix-range queries of the following form: “Return the sum (or count)

of y-values from S where the corresponding x-values are at most x∗”. Here, x∗ is a value

that is presented at query time. Their solution was based on the quantile summary of [62].

Cormode, Tirthapura, and Xu [37] presented algorithms for maintaining the more general case

of time-decayed correlated aggregates, where the stream elements were weighted based on the

time of arrival. This work also addressed the “sum” aggregate. A recent work by Tirthapura

and Woodruff [103] presents a general method for estimating correlated aggregates for a class

of aggregates that satisfy a certain set of conditions.

The above works differ from our work in the following respect. In our case the constraint

on the x dimension is of the form “the frequency of the x value selected is large”, while the

constraints in the previous works [55, 15, 37, 103] are of the form x > x∗ or x < x∗. These
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two types of constraints require significantly different techniques. For instance in the case of

the constraint of the form x > x∗, we know that the interval of x that is of interest always has

the right endpoint equal to the maximum x value; and the techniques in [103, 37] make use of

this by storing summaries over a nested sequence of intervals with the right endpoint equal to

the maximum x value. But the x values of interest in our case do not necessarily even form a

contiguous subsequence of the universe.

The heavy-hitter literature has usually focused on the following problem. Given a sequence

of elements A = (a1, a2, . . . , aN ) and a user-input threshold φ ∈ (0, 1), find data items that

occur more than φN times in A. Misra and Gries [89] presented a deterministic algorithm

for this problem, with space complexity being O( 1
φ), time complexity for updating the sketch

with the arrival of each element being O(log 1
φ), and query time complexity being O( 1

φ). For

exact identification of heavy-hitters, their algorithm works in two passes. For approximate

heavy-hitters, their algorithm used only one pass through the sequence, and had the following

approximation guarantee. Assume user-input threshold φ and approximation error ε < φ. Note

that for an online algorithm, N is the number of elements received so far.

• All items whose frequencies exceed φN are output. i.e. there are no false negatives.

• No item with frequency less than (φ− ε)N is output.

Demaine et al [43] and Karp et al [71] improved the sketch update time per element of the

Misra-Gries algorithm from O(log 1
φ) to O(1), using an advanced data structure combining a

hashtable, a linked list and a set of doubly-linked lists. Manku and Motwani [87] presented a

deterministic “Lossy Counting” algorithm that offered the same approximation guarantees as

the one-pass approximate Misra-Gries algorithm; but their algorithm required O(1
ε log (εN))

space in the worst case. For our problem, we chose to extend the Misra-Gries algorithm as it

takes asymptotically less space than [87].

3.3 Algorithm

Our algorithm is based on a nested application of an algorithm for identifying frequent

items from an one-dimensional stream, due to Misra and Gries [89]. We first describe the
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Misra-Gries algorithm (henceforth called the MG algorithm). Suppose we are given an input

stream a1, a2, . . ., and an error threshold ε, 0 < ε < 1. The algorithm maintains a data structure

D that contains at most 1
ε (key, count) pairs. On receiving an item ai, it is first checked if

a tuple (ai, ·) already exists in D. If it does, ai’s count is incremented by 1; otherwise, the

pair (ai, 1) is added to D. Now, if adding a new pair to D makes |D| exceed 1
ε , then for each

(key, count) pair in D, the count is decremented by one; and any key whose count falls to zero

is discarded. This ensures at least the key which was most recently added (with a count of

one) would get discarded, so the size of D, after processing all pairs, would come down to 1
ε

or less. Thus, the space requirement of this algorithm is O(1
ε ). The data structure D can be

implemented using hashtables or height-balanced binary search trees. At the end of one pass

through the data, the MG algorithm maintains the frequencies of keys in the stream with an

error of no more than εn, where n is the size of the stream. The MG algorithm can be used in

exact identification of heavy hitters from a data stream using two passes through the data.

In the scenario of limited memory, the MG algorithm can be used to solve problem 4 in

three passes through the data, as follows. We first describe a four pass algorithm. In the first

two passes, heavy-hitters along the primary dimension are identified, using memory O(1/φ1).

Note that this is asymptotically the minimum possible memory requirement of any algorithm for

identifying heavy-hitters, since the size of output can be Ω
(

1
φ1

)
. In the next two passes, heavy-

hitters along the secondary dimension are identified for each heavy-hitter along the primary

dimension. This takes space O
(

1
φ2

)
for each heavy-hitter along the primary dimension. The

total space cost is O
(

1
φ1φ2

)
, which is optimal, since the output could be Ω

(
1

φ1φ2

)
elements.

The above algorithm can be converted into a three pass exact algorithm by combining the

second and third passes.

The high-level idea behind our single-pass algorithm for Problem 5 is as follows. The MG

algorithm for an one-dimensional stream, can be viewed as maintaining a small space “sketch”

of data that (approximately) maintains the frequencies of each distinct item d along the primary

dimension; of course, these frequency estimates are useful only for items that have very high

frequencies. For each distinct item d along the primary dimension, apart from maintaining

its frequency estimate f̂d, our algorithm maintains an embedded MG sketch of the substream
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Sd induced by d, i.e. Sd = {(x, y)|((x, y) ∈ S) ∧ (x = d)}. The embedded sketch is a set of

tuples of the form (s, f̂d,s), where s is an item that occurs in Sd, and f̂d,s is an estimate of the

frequency of the pair (d, s) in S (or equivalently, the frequency of s in Sd). While the actions

on f̂d (increment, decrement, discard) depend on how d and the other items appear in S, the

actions on f̂d,s depend on the items appearing in Sd. Further, the sizes of the tables that are

maintained have an important effect on both the correctness and the space complexity of the

algorithm.

We now present a more detailed description. The algorithm maintains a table H, which is

a set of tuples (d, f̂d, Hd), where d is a value along the primary dimension, f̂d is the estimated

frequency of d in the stream, and Hd is another table that stores the values of the secondary

attribute that occur with d. Hd stores its content in the form of (key, count) pairs, where the

keys are values (s) along the secondary attribute and the counts are the frequencies of s in Sd,

denoted as f̂d,s, alongwith d.

The maximum number of tuples in H is s1, and the maximum number of tuples in each

Hd is s2. The values of s1 and s2 depend on the parameters φ1, φ2, ε1, ε2, and are decided at

the start of the algorithm. Since s1 and s2 effect the space complexity of the algorithm, as

well as the correctness guarantees provided by it, their values are set based on an optimization

procedure, as described in Section 3.5.

The formal description is presented in Algorithms 8, 9 and 10. Before a stream element is

received, Algorithm 8 Sketch-Initialize is invoked to initialize the data structures. Algorithm

9 Sketch-Update is invoked to update the data structure as each stream tuple (x, y) arrives.

Algorithm 10 Report-CHH is used to answer queries when a user asks for the CHHs in the

stream so far.

On receiving an element (x, y) of the stream, the following three scenarios may arise. We

explain the action taken in each.

1. If x is present in H, and y is present in Hx, then both f̂x and f̂x,y are incremented.

2. If x is present in H, but y is not in Hx, then y is added to Hx with a count of 1. If this

addition causes |Hx| to exceed its space budget s2, then for each (key, count) pair in Hx,
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the count is decremented by 1 (similar to the MG algorithm). If the count of any key

falls to zero, the key is dropped from Hx. Note that after this operation, the size of Hx

will be at most s2.

3. If x is not present in H, then an entry is created for x in H by setting f̂x to 1, and by

initializing Hx with the pair (y, 1). If adding this entry causes |H| to exceed s1, then

for each d ∈ H, fd is decremented by 1. If the decrement causes f̂d to be zero, then we

simply discard the entry for d from H.

Otherwise, when fd is decremented, the algorithm keeps the sum of the ˆfd,s counts within

Hd equal to fd; the detailed correctness is proved in Section 3.5. To achieve this, an

arbitrary key s is selected from Hd such that such that f̂d,s > 0, and f̂d,s is decremented

by 1. If f̂d,s falls to zero, s is discarded from Hd.

Algorithm 8: Sketch-Initialize(φ1, φ2, ε1, ε2)
Input: Threshold for primary dimension φ1; Threshold for secondary dimension φ2;

Tolerance for primary dimension ε1; Tolerance for secondary dimension ε2

1 H ← Φ
2 Set s1 and s2 as described in Section 3.5.
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Algorithm 9: Sketch-Update(x, y)
Input: Element along primary dimension x; Element along secondary dimension y

1 if x ∈ H then
2 f̂x ← f̂x + 1;
3 if y ∈ Hx then

/* Both x and y are present */

4 Increment f̂x,y in Hx by 1;
5 else

/* x ∈ H, but y 6∈ Hx */

6 Add the tuple (y, 1) to Hx;
7 if |Hx| > s2 then
8 foreach (s, f̂d,s) ∈ Hx do
9 f̂d,s ← f̂d,s − 1;

10 if f̂d,s = 0 then
11 discard (s, f̂d,s) from Hx;
12 end
13 end
14 end
15 end
16 else

/* Neither of x or y is present */

17 Hx ← Φ; Add (y, 1) to Hx; f̂x ← 1;
18 if |H| > s1 then
19 foreach d ∈ H do
20 f̂d ← f̂d − 1;
21 if there exists s such that f̂d,s > 0 then
22 Choose an arbitrary (s, f̂d,s) ∈ Hd such that f̂d,s > 0;
23 f̂d,s ← f̂d,s − 1;
24 if f̂d,s = 0 then
25 discard (s, f̂d,s) from Hd;
26 end
27 end
28 if f̂d = 0 then
29 Discard (d,Hd) from H;
30 end
31 end
32 end
33 end



www.manaraa.com

69

Algorithm 10: Report-CHH(N)
Input: Size of the stream N

1 foreach d ∈ H do
2 if f̂d ≥ (φ1 − 1

s1
)N then

3 Report d as a frequent value of the primary attribute;
4 foreach (s, f̂d,s) ∈ Hd do
5 if f̂d,s ≥ (φ2 − 1

s2
)f̂d − N

s1
then

6 Report s as a CHH occurring with d;
7 end
8 end
9 end

10 end

3.4 Correctness

In this section, we show the correctness of the algorithm, subject to the following constraints

on s1 and s2. In Section 3.5, we assign values to s1 and s2 in such a manner that the space

taken by the data structure is minimized.

Constraint 3.4.1
1
s1
≤ ε1

Constraint 3.4.2
1
s2

+
1 + φ2

s1(φ1 − ε1)
≤ ε2

Consider the state of the data structure after a stream S of length N has been observed.

Consider a value d of the primary attribute, and s of the secondary attribute. Let fd and fd,s

be defined as in Section 3.1. Our analysis focuses on the values of variables f̂d and f̂d,s, which

are updated in Algorithms 9 and used in Algorithm 10. For convenience, if d is not present in

H then we define f̂d = 0. Similarly, if d is not present in H, or if (d, s) is not present in Hd,

then we define f̂d,s = 0.

Lemma 3.4.1

f̂d ≥ fd −
N

s1
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Proof: The total number of increments in the s1 counters that keep track of the counts of the

different values of the primary attribute is N . Each time there is a decrement to f̂d (in Line 20

of Algorithm 9), s1 + 1 different counters are decremented. The total number of decrements,

however, cannot be more than the total number of increments, and hence is at most N . So the

number of times the block of lines 19-31 in Algorithm 9 gets executed is at most N
s1+1 <

N
s1

. We

also know that f̂d is incremented exactly fd times, hence the final value of f̂d is greater than

fd − N
s1

.

Lemma 3.4.2 Assume that Constraint is true. If fd > φ1N , then d is reported by Algorithm 10

as a frequent item. Further, if fd < (φ1 − ε1)N , then d is not reported as a frequent item.

Proof: Suppose fd ≥ φ1N . From Lemma 3.4.1, f̂d ≥ fd − ε1N ≥ φ1N − ε1N . Hence

Algorithm 10 will report d (see Lines 2 and 3). Next, suppose that fd < (φ1 − ε1)N . Since

f̂d ≤ fd, Algorithm 10 will not report d as a frequent item.

Lemma 3.4.3 ∑
(s,·)∈Hd

f̂d,s ≤ f̂d

Proof: Let Σd =
∑

(s,·)∈Hd f̂d,s. Let C(n) denote the condition Σd ≤ f̂d after n stream

elements have been observed. We prove C(n) by induction on n. The base case is when n = 0,

and in this case, f̂d,s = f̂d = 0 for all d, s, and C(0) is trivially true. For the inductive step,

assume that C(k) is true, for k ≥ 0. Consider a new element that arrives, say (x, y), and

consider Algorithm 9 applied on this element. We consider four possible cases.

(I) If x = d, and d ∈ H, then f̂d is incremented by 1, and it can be verified (Lines 3-11)

that Σd increases by at most 1 (and may even decrease). Thus C(k + 1) is true.

(II) If x = d, and d 6∈ H, then initially, f̂d and Σd are both 1 (line 17). If |H| ≤ s1, then

both f̂d and Σd remain 1, and C(k+ 1) is true. Suppose |H| > s1, then both f̂d and Σd will go

down to 0, since Hd will be discarded from H. Thus C(k + 1) is true.

(III) If x 6= d, and x ∈ H, then neither f̂d nor Σd change.
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(IV) Finally, if x 6= d and x 6∈ H, then it is possible that f̂d is decremented (line 20). In

this case, if Σd > 0, then Σd is also decremented (line 22), and C(k+ 1) is satisfied. If Σd = 0,

then C(k + 1) is trivially satisfied since f̂d ≥ 0.

Lemma 3.4.4 Subject to Constraint , f̂d,s ≥ fd,s − ε2fd − ε1N .

Proof: Note that each time the tuple (d, s) occurs in the stream, f̂d,s is incremented in

Algorithm 9. But f̂d,s can be less than fd,s because of decrements in Lines 9 or 23 in Algorithm

9. We consider these two cases separately.

Let Σd =
∑

(s,·)∈Hd f̂d,s. For decrements in Line 9, we observe that each time this line is

executed, Σd reduces by s2 + 1. From Lemma 3.4.3, we know that Σd ≤ f̂d ≤ fd. Thus the

total number of times f̂d,s is decremented due to Line 9 is no more than fd
s2+1 . From Constraint

3.4.2, we know 1
s2
< ε2, and fd

s2+1 < ε2fd.

For decrements in Line 23, we observe that f̂d,s is decremented in Line 23 no more than

the number of decrements to f̂d, which was bounded by N
s1

in Lemma 3.4.1. From Constraint

3.4.4, this is no more than ε1N .

Lemma 3.4.5 For any value d that gets reported in line 3 of Algorithm 10, any value s of

the secondary attribute that occurs with d such that fd,s > φ2fd, will be identified by line 6 of

Algorithm 10 as a CHH occurring alongwith d.

Proof: From Lemma 3.4.4,

f̂d,s ≥ fd,s − ε2fd − ε1N

> φ2fd − ε2fd − ε1N

= (φ2 − ε2)fd − ε1N

≥ (φ2 − ε2)f̂d − ε1N

where we have used fd ≥ f̂d. The lemma follows since (φ2 − ε2)f̂d − ε1N is the threshold

used in line 5 of Algorithm 10 to report a value of the secondary attribute as a CHH.
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Lemma 3.4.6 Under Constraints 3.4.4 and 3.4.2, for any value of d that is reported as a

heavy-hitter along the primary dimension, then for a value s′ along the secondary dimension,

if fd,s′ < (φ2 − ε2)fd, then the pair (d, s′) will not be reported as a CHH.

Proof: We will prove the contrapositive of the above statement. Consider a value s such that

(d, s) is reported as a CHH. Then, we show that fd,s ≥ (φ2 − ε2)fd. If (d, s) is reported, then

it must be true that f̂d,s ≥ (φ2 − 1
s2

)f̂d − N
s1

(Algorithm 10, line 5). Using fd,s ≥ f̂d,s, and

f̂d ≥ fd − N
s1

, we get:

fd,s ≥ f̂d,s

≥
(
φ2 −

1
s2

)
f̂d −

N

s1

≥
(
φ2 −

1
s2

)(
fd −

N

s1

)
− N

s1

=
(
φ2 −

1
s2

)
fd −

N

s1

(
1 + φ2 −

1
s2

)
≥

(
φ2 −

1
s2

)
fd −

fd
(φ1 − ε1)s1

(
1 + φ2 −

1
s2

)
(since d gets reported, by Lemma 3.4.2, fd ≥ (φ1 − ε1)N ⇒ N ≤ fd

φ1−ε1 )

=
(
φ2 −

1
s2
− 1

(φ1 − ε1)s1

(
1 + φ2 −

1
s2

))
fd

≥ fd(φ2 − ε2)(using Constraint 3.4.2)

Lemmas 3.4.6, 3.4.5, and 3.4.2 together yield the following.

Theorem 3.4.1 If Constraints 3.4.4 and 3.4.2 are satisfied, then Algorithms 8, 9 and 10

satisfy all the four requirements of Problem 5.

3.5 Analysis

In this section, we analyze the space complexity of the algorithm. In Theorem 3.4.1, we

showed that the Algorithms 9 and 10 solve the Approximate CHH detection problem, as long

as constraints 3.4.4 and 3.4.2 are satisfied.
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Space Complexity in terms of s1 and s2. In our algorithm, we maintain at most s2

counters for each of the (at most) s1 distinct values of the primary attribute in H. Hence, the

size of our sketch is O(s1 + s1s2) = O(s1s2). We now focus on the following question. What is

the setting of s1 and s2 so that the space complexity of the sketch is minimized while meeting

the constraints required for correctness.?

Lemma 3.5.1 Let α =
(

1+φ2

φ1−ε1

)
. Subject to constraints 3.4.4 and 3.4.2, the space of the data

structure is minimized by the following settings of s1 and s2.

• If ε1 ≥ ε2
2α , then s1 = 2α

ε and s2 = 2
ε2

. In this case, the space complexity is O
(

1
(φ1−ε1)ε22

)
.

• If ε1 < ε2
2α , then s1 = 1

ε1
, and s2 = 1

ε2−αε1 . In this case, the space complexity is O( 1
ε1ε2

).

Proof: Let σ1 = 1
s1

, σ2 = 1
s2

. The problem is now to maximize σ1σ2. Constraints 3.4.4 and

3.4.2 can be rewritten as follows.

• Constraint 1: σ1 ≤ ε1

• Constraint 2: ασ1 + σ2 ≤ ε2

First, we note that any assignment (σ1, σ2) = (x, y) that maximizes σ1σ2 must be tight

on Constraint 2, i.e. αx + y = ε2. This can be proved by contradiction. Suppose not, and

αx + y < ε2, and xy is the maximum possible. Now, there is a solution σ1 = x, and σ2 = y′,

such that y < y′, and Constraints 1 and 2 are still satisfied. Further, xy′ > xy, showing that

the solution (x, y) is not optimal.

Thus, we have:

σ2 = ε2 − ασ1 (3.1)

Thus the problem has reduced to: Maximize f(σ1) = σ1 (ε2 − ασ1) subject to σ1 ≤ ε1.

Consider

f ′(σ1) = ε2 − 2ασ1

We consider two cases.
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• Case I: ε1 ≥ ε2
2α .

Setting f ′(σ1) = 0, we find that the function reaches a fixed point at σ1 = ε2
2α . At this

point, f ′′(σ1) = −2α, which is negative. Hence f(σ1) is maximized at σ1 = ε2
2α . We note

that this value of σ1 does not violate Constraint 1, and hence this is a feasible solution.

In this case, the optimal settings are: σ1 = ε2
2α and σ2 = ε2

2 . Thus s1 = 2α
ε and s2 = 2

ε2
.

The space complexity is O( 1
σ1σ2

) = O(4α
ε22

).

• Case II: ε1 < ε2
2α

The function f(σ1) is increasing for σ1 from 0 to ε2
2α . Hence this will be maximized at

the point σ1 = ε1. Thus, in this case the optimal settings are σ1 = ε1, and σ2 = ε2−αε1.

Thus, s1 = 1
ε1

, and s2 = 1
ε2−αε1 . The space complexity is: O( 1

ε1(ε2−αε1)).

We note that since ε2 > 2αε1, we have (ε2 − αε1) > ε2
2 , and hence the space complexity

is O( 1
ε1ε2

).

Lemma 3.5.2 The time taken to update the sketch on receiving each element of the stream is

O(max(s1, s2)).

Proof: In processing an element (x, y) of the stream by Algorithm 9, the following three

scenarios may arise.

1. x is present in H, and y is present in Hx. We implemented the tables as hash tables,

hence the time taken to look up and increment f̂x from H and f̂x,y from Hx is O(1).

2. x is present in H, but y is not in Hx. If the size of Hx exceeds its space budget s2, then,

the time taken to decrement the frequencies of all the stored values of the secondary

attribute is O(s2).

3. x is not present in H. If the size of H exceeds its space budget s1, then the time taken

to decrement the frequencies of all the stored values of the primary attribute is O(s1).

The time complexity to update the sketch on receiving each element is the maximum of these

three, which establishes the claim.
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3.6 Experiments

We simulated our algorithm in C++, using the APIs offered by the Standard Template

Library [10], on anonymized packet header traces collected by CAIDA [25] in both directions

of an OC48 link. We conducted the experiments over two machines: one had Cygwin 5.1 (on

Windows XP) with 3 GHz Pentium dual-core processor and 2 GB RAM, and the other had

Red Hat Linux 5.3 (kernel version 2.6.18) with a 2.4 GHz Pentium 4 processor and 1 GB RAM.

We used windump [11] on the first machine in conjunction with our custom Java application

to extract the source IP address, the destination IP address, the source port number and the

destination port number from the .pcap files.

Objective: The goal of the simulation was threefold: first, to learn about typical frequency

distributions in real two-dimensional network traffic streams; second, to illustrate the reduc-

tion in space and time cost achievable by the small-space algorithm in practice; and finally, to

demonstrate how the space budget (and hence, the allocated memory) influences the accuracy

of our algorithm in practice.

For the first objective, we ran a naive algorithm on a smaller dataset of 248 million (des-

tination IP, source IP) tuples, where all the distinct destination IPs were stored, and for each

distinct destination IP, all the distinct source IPs were stored. We identified (exactly) the

frequent values along both the dimensions for φ = 0.001 and ψ = 0.001. Only 43 of the 1.2

million distinct destination IPs were reported as heavy-hitters. For the secondary dimension,

we ranked the heavy-hitter destination IPs based on the number of distinct source IPs they

co-occurred with, and the number of distinct source IPs for the top eight are shown in Figure

3.1. All these heavy-hitter destination IPs co-occurred with 9,000-18,000 distinct source IPs,

whereas, for all of them, the number of co-occurring heavy-hitter source IPs was in the range

20-200 (note that the Y-axis in Figure 3.1 is in log scale). This shows that the distribution

of the primary attribute values, as well as that of the secondary attribute values for a given

value of the primary attribute, are very skewed, and hence call for the design of small-space
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approximation algorithms like ours.
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Figure 3.1: On the X-axis are the ranks of the eight (heavy-hitter) destination IPs, that co-appear
with maximum number of distinct source IPs. For each destination IP, the Y-axis shows 1) the number
of distinct source IPs co-occurring with it, 2) the number of heavy-hitter destination IPs co-appearing
with it. Note that the Y-axis is logarithmic.

The second objective was accomplished by comparing the space and time costs of the naive

algorithm as above (on the same dataset), with those of the small-space algorithm, run with

s1 = 3000 and s2 = 2000 (Figure 3.2). We defined the space cost as the distinct number

of (dstIP, srcIP) tuples stored (
∑
d |Hd|), which is 34 times higher for the naive algorithm

compared to the small-space one. Also, the naive algorithm took more than twice as much

time to run the small-space one.

For the third objective, we tested the small-space algorithm on two datasets (with different

values of s1 and s2): one with 1.4 billion (destination IP, source IP) tuples, and the other with

20.7 million (destination port, destination IP) tuples - we will refer to these two datasets as

“IPPair” and “PortIP” respectively. To test the accuracy of our small-space algorithm, we de-

rived the “ground truth”, i.e., a list of the actual heavy-hitters along both the dimensions along

with their exact frequencies, by employing a four-pass variant of the Misra-Gries algorithm (as

discussed in Section 3.1.1).
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Figure 3.2: Comparison of space (left) and time (right) costs of the naive and the small-space algorithms.
The space is the total number of distinct tuples stored, summed over all distinct destination IP addresses.
The time is the number of hours to process the 248 million records. Note that the Y-axis for the left
graph is logarithmic.

Observations: We define the error statistic in estimating the frequency of a heavy-hitter

value d of the primary attribute as fd−f̂d
N , and in Figures 3.3 and 3.5, for each value of s1, we

plot the maximum and the average of this error statistic over all the heavy-hitter values of the

primary attribute. We observed that both the maximum and the average fell sharply as s1

increased. Even by using a space budget (s1) as low as 1000, the maximum error statistic was

only 0.09% for “IPPair” and 0.04% for “PortIP”.

The graphs in Figures 3.4 and 3.6 show the results of running our small-space algorithm

with different values of s1 as well as s2. We define the error statistic in estimating the frequency

of a CHH s (that occurs alongwith a heavy-hitter primary attribute d) as fd,s−f̂d,s
fd

, and for each

combination of s1 and s2, we plot the theoretical maximum, the experimental maximum and

the average of this error statistic over all CHH attributes. Here also, we observed that both

the maximum and the average fall sharply as s1 increases. However, for a fixed value of s1, as

we increased the value of s2, the maximum did not change at all (for either of “IPPair” and

“PortIP”), and the average did not reduce too much - this becomes evident if we compare the

readings of the three sub-figures in Figures 3.4 or 3.6, which differ in their values of s2, for
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Figure 3.3: Error statistic in estimating the frequencies of the heavy-hitter destination IPs in “IPPair”.
The graph shows the theoretical maximum ( 1

s1
), the experimental maximum and the experimental

average.

identical values of s1. The possible reason is the number of CHHs being very low compared to

the number of distinct values of the secondary attribute occurring with a heavy-hitter primary

attribute, as we have pointed out in Figure 3.1 for “IPPair”. However, this is good because it

implies that in practice, setting s2 as low as 1
ψ should be enough.
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Figure 3.4: Error statistic in estimating the frequencies of the CHH source IPs in “IPPair”, for s2 =
1100, 1500 and 2000 respectively. The graph shows the theoretical maxima

(
1
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+ 1
s2

)
, the experimental

maxima and the experimental average.
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Figure 3.5: Error statistic in estimating the frequencies of the heavy-hitter destination ports from
“PortIP”
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Figure 3.6: Error statistic in estimating the frequencies of the CHH destination IPs in “PortIP”. The
three graphs are for s2 = 1100, s2 = 1500 and s2 = 2000 respectively.
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3.7 Conclusion and Future Work

For two-dimensional data streams, we presented a small-space approximation algorithm to

identify the heavy-hitters along the secondary dimension from the substreams induced by the

heavy-hitters along the primary. We theoretically studied the relationship between the maxi-

mum errors in the frequency estimates of the heavy-hitters and the space budgets; computed

the minimum space requirement along the two dimensions for user-given error bounds; and

tested our algorithm to show the space-accuracy tradeoff for both the dimensions.

Identifying the heavy-hitters along any one dimension allows us to split the original stream

into several important substreams; and take a closer look at each one to identify the properties

of the heavy-hitters. In future, we plan to work on computing other statistics of the heavy-

hitters. For example, as we have already discussed in Section 4.5, our experiments with the naive

algorithm (on both the datasets) revealed that the number of distinct secondary attribute values

varied quite significantly across the different (heavy-hitter) values of the primary attribute.

For any such data with high variance, estimating the variance in small space [19, 116] is an

interesting problem in itself. Moreover, for data with high variance, the simple arithmetic mean

is not an ideal central measure, so finding different quantiles, once again in small space, can be

another problem worth studying.
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CHAPTER 4. Identifying Frequent Items in a Network using Gossip

In this chapter, we present algorithms for identifying frequently occurring items in a large

distributed data set. Our algorithms use gossip as the underlying communication mechanism,

and do not rely on any central control, or on an underlying network structure, such as a

spanning tree. Instead, nodes repeatedly select a random partner and exchange data with the

partner. If this process continues for a (short) period of time, the desired results are computed,

with probabilistic guarantees on the accuracy. Our algorithm for identifying frequent items is

built by layering a novel small space “sketch” of data over a gossip-based data dissemination

mechanism. We prove that the algorithm identifies the frequent items with high probability,

and provide bounds on the time till convergence. To our knowledge, this is the first work on

identifying frequent items using gossip.

4.1 Introduction

We are increasingly faced with data-intensive decentralized systems, such as large scale

peer-to-peer networks, server farms with tens of thousands of machines, and large wireless

sensor networks. With such large networks comes increasing unpredictability; the networks are

constantly changing, due to nodes joining and leaving, or due to node and link failures. Gossip

is a type of communication mechanism that is ideally suited for distributed computation on

such unstable, large networks. Gossip-based distributed protocols do not assume any underlying

structure in the network, such as a spanning tree, and hence, there is no overhead of sub-network

formation and maintenance. A gossip protocol proceeds in many “rounds”. In each round, a

node contacts a few randomly chosen nodes in the system and exchanges information with

them. The randomization inherently provides robustness, and surprisingly, often leads to fast
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convergence times. The use of gossip-based protocols for data dissemination and aggregation

in distributed systems was first proposed by Demers et al. [44].

We consider the problem of identifying frequent items in a distributed data set, using gossip.

Consider a large peer-to-peer network that is distributing content, such as news or software

updates. Suppose that the nodes in the network wish to track the identities of the most

frequently accessed items in the network. The relevant data for tracking this aggregate are

the frequencies of accesses of different items. However, this data is distributed throughout the

network – in fact, even the number of accesses to a single item may not be available at any single

point in the network. Our algorithm can be used to track the most frequently accessed items in

a low-overhead, decentralized manner, without having to aggregate the frequencies of accesses

at any central location. Another application of tracking frequent items is in the detection of

a distributed denial of service (DDoS) attack, where many malicious nodes may team up to

simultaneously send excessive traffic towards a single victim (typically a web server), so that

legitimate clients are denied service. Detecting a DDoS attack is equivalent to finding that

the total number of accesses to some server has exceeded a threshold. A distributed frequent

items algorithm can help by tracking the most frequently accessed web servers in a distributed

manner, and noting if these frequencies are abnormally large. With a gossip-based algorithm

this computation can proceed in a totally decentralized manner.

We consider two versions of the problem, one with a relative threshold on the frequency, and

the other with an absolute threshold on the frequency. In the relative threshold version, the

task is to identify all items whose frequency of occurrence is more than a certain fraction of the

total size of the data, where the fraction (the relative threshold) is a user-defined parameter. In

the absolute threshold version, the task is to identify all items whose frequency of occurrence

is at least an absolute number (the absolute threshold), which is a user-defined parameter. In

a distributed dynamic network, these two problems turn out to be rather different from each

other.

Our algorithms work without explicitly tabulating the frequencies of different items at any

single place in the network. Instead, the distributed data is represented by a small space

“sketch” that is propagated and updated via gossip. A sketch is a space-efficient representation
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of the input, which is specific to the aggregate being computed, and captures the essence of the

data for our purposes. The space taken by the sketch can be tuned as a function of the desired

accuracy. A complication with gossip is that since it is an unstructured form of communication,

it is possible for the same data item to be inserted into the sketch multiple times as the sketch

propagates. Due to this, a technical requirement on the sketch is that it should be able to

handle duplicate insertions, i.e. it should be duplicate-insensitive. If the gossip proceeds long

enough, the sketch can be used to identify all items whose frequency exceeds the user defined

threshold. At the same time, items whose popularity is significantly below the threshold will

be omitted (again, with high probability).

Contributions. The contributions of this work are as follows:

• We present randomized algorithms for identifying frequent items using gossip, for both

the relative and absolute threshold versions of the problem.

• For each algorithm, we present a rigorous analysis of the correctness, time till convergence,

and the communication overhead. Our analysis shows that these algorithms converge

quickly, and can maintain frequent items in a network with a reasonable communication

overhead.

• We present results from our simulations on synthetic data sets. We observed in our

simulations that the convergence time and the communication overhead were both much

lower than the theoretically guaranteed predictions.

To our knowledge, this is the first work on identifying frequent items in a distributed data

set using gossip.

With a gossip protocol, communication is inherently randomized, and a node can never

be certain that the results on hand are correct. However, the longer the protocol runs, the

closer the results get to the correct answer, and we are able to quantify the time taken till the

protocol converges to the correct answer, with high probability. Gossip algorithms are suitable

for applications which can tolerate such relaxed consistency guarantees. Examples include

a network monitoring application, which is running in the background and is maintaining
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statistics about frequently requested data items, or the most frequently observed data in a

distributed system. In such an application, an exact answer may not be required, and an

approximate answer may suffice.

4.1.1 Related Work

Demers et al. [44] were the first to provide a formal treatment of gossip protocols (or

“epidemic algorithms” as they called them) for data dissemination. Kempe and Kleinberg

[74] analyzed the influence of the underlying gossip mechanism on the design of gossip-based

protocols, and explored the limitations of uniform gossip in solving the nearest resource location

problem. Kempe, Dobra and Gehrke [73] proposed algorithms for computing the sum, average,

approximately uniform random sample and quantiles using uniform gossip. Their algorithm

for quantiles are based on their algorithm for the sum – they choose a random element in the

data, and count the number of elements that are greater and lesser than the chosen element,

and recurse on smaller data sets until the quantile is found. Thus their algorithms need many

instances of “sum” computations to converge before the quantile is found. A similar approach

could potentially be used to find frequent items using gossip. In contrast, our algorithms are

not based on repeated computation of the sum, and converge faster.

Much recent work [21, 22, 92] has focused on computing “separable functions” using gossip.

A separable function is one that can be expressed as the sum of individual functions of the

node inputs. For example, the function “count” is separable, and so is the function “sum”.

However, the set of frequent items is not a separable function. Hence, these techniques do

not apply to our problem. There is much other work on the computation of basic aggregates,

we list a few representative ones here. Kashyap et al. [72] proposed algorithms for gossip

with flexible tradeoffs between the number of rounds and the number of messages transmitted.

Dimakis, Sarwate and Wainwright [45] consider the problem of computing the average over

random geometric graphs with location-aware nodes, combining uniform gossip with greedy

geographic routing. Deb, Medard and Choute [41] used network coding along with uniform

gossip to speed up the dissemination of k messages in the network.

The problem of identifying frequent items in data has been extensively studied [89, 87, 71]
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in the database, data streams and network monitoring communities (where frequent items are

often called “heavy-hitters”). The early work in this is due to Misra and Gries [89], who pro-

posed a deterministic algorithm to identify frequent items in a stream in small space, followed

by Manku and Motwani [87], who gave randomized and deterministic algorithms for the same

problem. The above were algorithms for a centralized setting.

In a distributed setting, Cao and Wang [26] proposed an algorithm to find the top-k items,

where they first made a lower-bound estimate for the kth value, and then used the estimate as a

threshold to prune away items which should not qualify as top-k. Zhao et al. [119] proposed a

sampling-based and a counting-sketch-based scheme to identify globally frequent items. Manjhi

et al. [86] present an algorithm for finding frequent items on distributed streams, through

a tree-based aggregation. Venkataraman et al. [110] present an algorithm for identifying

“superspreaders” or “heavy distinct hitters” in a network data stream. Keralapura, Cormode

and Ramamirtham [75] proposed an algorithm for continuously maintaining the frequent items

over a network of nodes. The above algorithms sometimes assume the presence of a central

node, or an underlying network structure such as a spanning tree [86, 75], and hence are not

applicable where the underlying network does not guarantee reliability or robustness. Haridasan

and van Renesse [65] proposed a gossip-based technique that allowed each node in a network

to estimate the distribution of values held by other nodes, but their results did not offer any

theoretical bounds.

Organization of the Paper. In Section 4.2, we state our system model and give a precise

definition of the problem. We first present the algorithm and analysis for the relative threshold

version in Section 4.3, and then the absolute threshold version in Section 4.4. In Section 4.5 we

discuss the simulation results for both absolute and relative thresholds with an asynchronous

time model. In Section 4.6, we discuss the extension of these results to synchronous gossip.

4.2 Model

We consider a distributed system with N nodes numbered from 1 to N . The number of

nodes N is not necessarily known to any participating node, and this information is not used
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by the algorithms. An “item” is an integer from the set {1, 2, . . . ,m}. An “element” is a single

occurrence of an item at any node. Each node i holds a multiset of items Mi, or equivalently, a

set of elements. Let Ni denote the size of Mi. Let M =
⋃N
i=1Mi denote the set of all elements

in the network.

For item v ∈ [m], the frequency of v is denoted by fv, and is defined as the number

of occurrences of v in M . Note that fv may not be available locally at any node, in fact

determining fv itself requires a distributed computation. The task is to identify those items v

such that fv is large. Let the total number of elements be defined as N =
∑N
i=1Ni.

We consider the scenario of uniform gossip, which is the most commonly used model of

gossip. Whenever a node i is chosen to transmit, it chooses the destination of its message to

be a node selected uniformly at random from among all the current nodes in the system. The

selection of the transmitting node is done by the distributed scheduler, described later in this

section. We assume that the participating nodes execute the algorithms faithfully, and do not

maliciously attempt to influence the results of the computation by sending spurious/incorrect

messages.

Problem Definition. We consider two variants of the problem, depending on how the

thresholds are defined.

• Relative Threshold. The user may be interested in identifying items whose relative

frequency in the data set exceeds a given threshold. More precisely, given a relative

threshold φ (0 < φ < 1), approximation error ψ (0 < ψ < φ), an item v is considered to

be a frequent item if fv ≥ φN , and v is considered an infrequent item if fv < (φ− ψ)N .

According to this definition, there may be no more than 1/φ frequent items.

• Absolute Threshold. The user gives an absolute frequency threshold k > 1 and ap-

proximation error λ (λ < k). An item v is considered a frequent item if fv ≥ k, and v

is an infrequent item if fv < k − λ. Note that there may be up to N/k frequent items

according to this definition.
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In a centralized setting, when all elements are being observed at the same location, the above

formulations of relative and absolute thresholds are equivalent, since the number of elements N

can be computed easily, and any absolute threshold can be converted into a relative threshold,

or vice versa. However, in a distributed setting, a threshold for relative frequency cannot be

locally converted by a node into a threshold on the absolute frequency, since the user in a large

distributed system may not know the number of nodes or the number of elements in the system

accurately enough. Thus, we treat these two problems separately. The lack of knowledge of the

network size N does not, though, prevent the system from choosing gossip partners uniformly

at random. For example, Gkantsidis et al. [60] show how random walks can provide a good

approximation to uniform sampling for networks where the gap between the first and the second

eigenvalues of the transition matrix is constant.

Once the gossip has continued for long enough, the following probabilistic guarantees must

hold, whether for absolute or relative thresholds. Let δ be a user-provided bound on the error

probability (0 < δ < 1).

• With probability at least (1− δ), every node reports every frequent item.

• With probability at least (1− δ), no node reports an infrequent item.

Note that we present randomized algorithms, where the probabilistic guarantees hold irre-

spective of the input.

Time Model. Time is divided into non-overlapping rounds. We consider two types of

models, asynchronous and synchronous, depending on whether or not the nodes proceed at the

same rate.

• In the asynchronous model, in each round, a single source node, chosen uniformly at

random out of all N nodes, transmits to another randomly chosen receiver. Thus, in each

round in the asynchronous model, there is only one message.

• In the synchronous model of communication, in each round, every node in the network

sends a message to a receiver chosen uniformly at random from among all nodes. Thus,
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in a single round of synchronous communication, N messages are exchanged among the

nodes.

In Sections 4.3 and 4.4, we mostly focus on the asynchronous model. We discuss the

extension of our results to the synchronous model in Section 4.6.

Performance Metrics. We evaluate the quality of our protocols via the following met-

rics: the convergence time, which is defined as the number of rounds of gossip till convergence,

and the communication complexity, which is defined as the number of bytes exchanged till

convergence.

4.3 Frequent Items with Relative Threshold

Given thresholds φ and ψ, where ψ < φ, the goal is to identify all items v such that fv ≥ φN

and no item u such that fu < (φ− ψ)N .

We first describe the intuition. Our algorithm is based on random sampling. The idea is

that if an item occurs frequently in the original data, it is likely to occur at approximately

the same relative frequency in an appropriately sized random sample too. Hence, if we choose

those items which have occurred frequently in the random sample, we are likely to choose the

frequent items in the input also. To give guaranteed accuracy, we need a large enough sampling

probability. However, this sampling probability cannot be decided in advance since the size of

the dataset is not known beforehand. Hence, our algorithm works with an adaptive sampling

probability, based on the idea of min-wise independent permutations [23]. For i ∈ [N ] and

` ∈ [Ni], let the tuple (i, `) denote the `th element within Mi. Thus the tuple (i, `) uniquely

identifies an element within M , by first identifying a node id i, and then an element within Mi.

Let m`
i denote the value of element (i, `). The algorithm assigns each element (i, `) a weight

w`i , which is a random number in the unit interval (0, 1).

The algorithm maintains a sketch S of (i, `,m`
i , w

`
i ) tuples where (i, `) identifies the element,

m`
i is the value of the element, and w`i is the weight. The sketch has no more than t elements,

and only the tuples that have the smallest weights are included in S. The intuition is that if

an item v has a large relative frequency, then v must occur frequently among the tuples with
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the t smallest weights, and hence in the sketch. Maintaining these t elements with the smallest

weights through gossip is easy, just as it is easy to maintain the smallest weight element through

gossip. If we choose a large enough sketch size t, the likelihood of a frequent item appearing in

the sketch a sufficient number of times is very high.

The algorithm for the asynchronous model is described in Figure 1. The threshold t is

determined through the analysis to be O( 1
ψ2 ln(1

δ )). There are three parts to this algorithm

(and all others that we describe). The first part is the Initialization, where each node initializes

its own sketch. The next part is the Gossip, where the nodes exchange sketches with each other

according to the communication model. The algorithm only describes what happens during

each round of gossip – it is implicit that such computations repeat forever. The third part is

the Query, where a query for frequent items is answered using the sketch. The accuracy of the

result improves as further rounds of gossip occur.

The sketch at any node can be stored by any data structure that implements an associative

array with keys in a sorted order, the key here being w`i , and the value being a combination of

the other three. In our simulation, we created a Java object of class Tuple with (i, `,m`
i , w

`
i ),

and each node maintains the sketch as a TreeSet collection of these Tuple objects. The

TreeSet Java class allows to store the objects in a user-defined order, so we kept the objects

sorted as per the weight w`i . The sorting order was defined by a class called WeightComparator,

which implements the Comparator interface of Java. When two sketches (TreeSet objects) were

merged in our simulation, the TreeSet class ensured that when an object is added to the sketch

of the local node, the user-defined ordering on weights was preserved. The implementation of

the TreeSet class ensures that the time taken to add, remove or check the existence of an item

to a TreeSet collection is logarithmic in the number of objects in the collection. After merging

two sketches, we checked whether the total number of objects exceeded the maximum size of

the sketch (t), and if it did, we created a SortedSet object with the t objects with the lowest

weights, and re-initialized the TreeSet object (the sketch) with this SortedSet object.
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Algorithm 11: Gossip algorithm at node i for finding the frequently occurring items with a
relative threshold

Input: Data sets Mi; error probability δ, relative frequency threshold φ, approximation
error ψ < φ

// Initialization

1 t← 128
ψ2 ln(3

δ )

2 Si ← Φ
3 foreach ` = 1 to Ni do
4 Choose w`i as a uniformly distributed random number in (0, 1)
5 Set Si ← Si ∪ {(i, `,m`

i , w
`
i )}

6 end
// Gossip

7 foreach round of gossip do
8 if sketch Sj is received from node j then
9 Si ← Si ∪ Sj

10 if |Si| > t then
11 retain t elements of Si with the smallest weights
12 end
13 end
14 if node i is selected to transmit then
15 select node j uniformly at random
16 send Si to j
17 end
18 end

// Query

19 when queried for the frequent items
20 foreach v ∈ {1, . . . ,m} do
21 if at least (φ− ψ

2 )t (nodeID, elementID, value, weight) tuples exist in Si with value v
then

22 report v as a frequent item
23 end
24 end



www.manaraa.com

93

4.3.1 Analysis

Let W denote the multi-set of weights
⋃N
i=1

⋃Ni
`=1{w`i}. Clearly, N = |W|. Let τ denote the

tth smallest element in W. Let M t be the set of elements {(i, `)} such that the w`i ≤ τ , where

ties are broken arbitrarily. In other words, M t is the set of t input elements which have been

assigned the smallest weights.

The analysis can be divided into two parts. We first show that with high probability, each

frequent item occurs with a sufficient frequency in M t. Similarly, with high probability, the

frequency in M t of each infrequent item is small. As a result, if the sketch at a node equals M t,

then it can identify frequent items with a low probability of a false positive or a false negative.

Note that this portion of the analysis is purely local, and has not yet dealt with the distributed

algorithm directly.

Next we analyze the distributed gossip process, and prove that with high probability, the

set M t is disseminated to all nodes within O(N logN) rounds. Combining the analysis of the

gossip with the results about false positives and false negatives, we obtain the main result about

the correctness of the algorithm, Theorem 4.3.1.

4.3.2 Analysis of M t

We first show that τ is sharply concentrated around t
N .

Lemma 4.3.1 If t = 128
ψ2 ln(3

δ ), then: (1) Pr[τ < t
N (1− ψ

4 )] < δ
3 and (2) Pr[τ > t

N (1+ ψ
4 )] < δ

3

Proof: Let X be a random variable equal to the number of elements in W that are less than

t
N (1 − ψ

4 ). Since the weights are chosen independently of each other, X follows a binomial

distribution with N trials and probability of success in each trial t
N (1− ψ

4 ). This gives E[X] =

t(1− ψ
4 ). Using Chernoff bounds, we get

Pr[τ <
t

N
(1− ψ

4
)] = Pr[X ≥ t] = Pr

[
X ≥ E[X]

(
1

1− ψ
4

)]

≤ Pr
[
X ≥ E[X](1 +

ψ

4
)
]

[since 1

1−ψ
4

> 1 + ψ
4 ]

≤ e−
E[X]ψ2

48 = e−
t(1−ψ4 )ψ2

48 (4.1)
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Using t = 128
ψ2 ln

(
3
δ

)
,

t(1− ψ
4 )ψ2

48
=

8
3

ln
(

3
δ

)
(1− ψ

4
) ≥ ln

(
3
δ

)
(4.2)

Note that 8
3(1− ψ

4 ) ≥ 1 since ψ ≤ 1. Substituting (4.2) in (4.1) yields:

Pr[τ <
t

N
(1− ψ

4
)] ≤ e− ln( 3

δ
) =

δ

3

which completes the proof of the first part.

For the second part, let Y be a random variable equal to the number of elements in W

that are less than t
N (1 + ψ

4 ). Y follows a binomial distribution with N trials and probability

of success in each trial equal to t
N (1 + ψ

4 ). This gives E[Y ] = t(1 + ψ
4 ).

Pr
[
τ >

t

N

(
1 +

ψ

4

)]
= Pr[Y < t] = Pr

[
Y < E[Y ]

(
1

1 + ψ
4

)]

Note that 1

1+ψ
4

≤ 1− ψ
8 since (1 + ψ

4 )(1− ψ
8 ) = 1 + ψ

8 −
ψ2

32 ≥ 1. This yields

Pr

[
Y < E[Y ]

(
1

1 + ψ
4

)]
≤ Pr

[
Y < E[Y ]

(
1− ψ

8

)]
≤ e−

E[Y ]ψ2

64
( 1

2
) [Chernoff bound]

Substituting t = 128
ψ2 ln

(
3
δ

)
, we get:

E[Y ]ψ2

64
= t(1 +

ψ

4
)
ψ2

64
=

128
64

ln(
3
δ

)(1 +
ψ

4
) ≥ 2 ln(

3
δ

)

Thus,

Pr
[
τ >

t

N

(
1 +

ψ

4

)]
≤ e− ln( 3

δ
) =

δ

3

We next prove results about the false negatives and false positives. In order to do so, we

need the following corollaries of the Chernoff bound. Let X be any binomial random variable,

i.e. X =
∑n
i=1Xi where the Xi are independent 0-1 random variables. The common form

of the Chernoff bound expresses the tail probabilities of X as a function of the expectation
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µ = E[X]. In our cases, E[X] is not known exactly, but a range [µL, µH ] is known such that

µL ≤ µ ≤ µH . In such a case, the following inequalities are useful.

Lemma 4.3.2 For any 0 < δ ≤ 1,

Pr[X ≥ (1 + δ)µH ] ≤ exp

(
−µHδ2

3

)
Proof: Let MX(γ) be the moment generating function of X.

Pr[X ≥ (1 + δ)µH ] = Pr[eγX ≥ eγ(1+δ)µH ] for any γ > 0

≤ E[eγX ]
eγ(1+δ)µH

[by Markov inequality]

=
MX(γ)
eγ(1+δ)µH

≤ e(eγ−1)µ

eγ(1+δ)µH
[since MX(γ) ≤ e(eγ−1)µ, as proved in [90], page 64]

≤ e(eγ−1)µH

eγ(1+δ)µH
[since µH ≥ µ, and γ > 0⇒ (eγ − 1) > 0⇒ e(eγ−1) > 1]

Substituting γ = ln(1 + δ) > 0, we get (for any δ > 0),

Pr[X ≥ (1 + δ)µH ] ≤
(

eδ

(1 + δ)(1+δ)

)µH
(4.3)

It is proved in [90], page 65, that for any 0 < δ ≤ 1,

eδ

(1 + δ)(1+δ)
≤ exp

(
−δ2

3

)
Combining this with inequality 4.3, the claim follows.

Lemma 4.3.3 For any 0 < δ < 1,

Pr[X ≤ (1− δ)µL] ≤ exp

(
−µLδ2

2

)
Proof:

Pr[X ≤ (1− δ)µL] = Pr[eγX ≥ eγ(1−δ)µL ] for any γ < 0

≤ E[eγX ]
eγ(1−δ)µL

[by Markov inequality]

=
MX(γ)
eγ(1−δ)µL

[MX(γ) is the moment generating function of X]

≤ e(eγ−1)µ

eγ(1−δ)µL
[since MX(γ) ≤ e(eγ−1)µ]

≤ e(eγ−1)µL

eγ(1−δ)µL
[since µL ≤ µ, and γ < 0⇒ (eγ − 1) < 0⇒ 0 < e(eγ−1) < 1]



www.manaraa.com

96

Substituting γ = ln(1− δ) < 0, we get, for any 0 < δ < 1,

Pr[X ≤ (1− δ)µL] ≤
(

e−δ

(1− δ)(1−δ)

)µL
(4.4)

It is proved in [90], page 66, that for any 0 ≤ δ < 1,

e−δ

(1− δ)(1−δ) ≤ exp

(
δ2

2

)

Combining this with inequality 4.4, the claim follows.

The following lemmas provide upper bounds on the probabilities of finding a false negative

and a false positive respectively, in a centralized setting.

Lemma 4.3.4 If v is a frequent item, i.e. fv ≥ φN , then with probability at least 1 − δ, v

occurs at least (φ− ψ
2 )t times in M t.

Proof: Let E1 be the event that v occurs at least (φ− ψ
2 )t times in M t. Let E2 be the event

τ ≥ t
N (1 − ψ

4 ). Let Z be a random variable indicating the number of copies of v with weight

t
N (1 − ψ

4 ) or smaller. Let E3 be the event that Z ≥ (φ − ψ
2 )t. We observe that if E2 and E3

are true, then E1 is also true. From Lemma 4.3.1, we know that Pr[Ē2] < δ
3 . Using these:

Pr[E1] ≥ Pr[E2 ∧ E3] = 1− Pr[Ē2 ∨ Ē3]

≥ 1− Pr[Ē2]− Pr[Ē3] ≥ 1− δ

3
− Pr

[
Z <

(
φ− ψ

2

)
t

]
(4.5)

To estimate Pr
[
Z <

(
φ− ψ

2

)
t
]
, note that Z follows a binomial distribution with φN or

more trials and a probability of success of t
N (1− ψ

4 ). This makes

E[Z] ≥ (φN )
(
t

N

(
1− ψ

4

))
= φt

(
1− ψ

4

)
≥
(
φ− ψ

4

)
t

Applying Lemma 4.3.3 with µL = (φ− ψ
4 )t (note that µ = E[Z] ≥ µL), we get

Pr
[
Z <

(
φ− ψ

2

)
t

]
= Pr

[
Z <

(
φ− ψ

4

)
t

(
1− ψ

4φ− ψ

)]
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≤ exp

−(φ− ψ
4 )t( ψ

4φ−ψ )2

2


≤ exp

(
−4 ln(3

δ )

φ− ψ
4

)
[Substituting t = 128

ψ2 ln(3
δ )]

< exp
(
−4 ln(

3
δ

)
)

[Since 0 < φ− ψ
4 < 1]

=
(
δ

3

)4

(4.6)

Substituting (4.6) in (4.5):

Pr[E1] ≥ 1− δ

3
−
(
δ

3

)4

≥ 1− δ

Lemma 4.3.5 If u is an infrequent item, i.e. fu < (φ − ψ)N , then, with probability at least

1− δ, u occurs less than (φ− ψ
2 )t times in M t.

Proof: Let Y denote the number of copies of u with weight ≤ t
N (1 + ψ

4 ). Let E denote the

event that u occurs less than (φ − ψ
2 )t times in M t. As in the proof of Lemma 4.3.4, using

Lemma 4.3.1, we get:

Pr[E] ≥ Pr
[(
τ ≤ t

N

(
1 +

ψ

4

))
∧
(
Y ≤

(
φ− ψ

2

)
t

)]
≥ 1− Pr

[
τ >

t

N

(
1 +

ψ

4

)]
− Pr

[
Y >

(
φ− ψ

2

)
t

]
≥ 1− δ

3
− Pr

[
Y >

(
φ− ψ

2

)
t

]
(4.7)

To estimate Pr
[
Y >

(
φ− ψ

2

)
t
]
, note that Y follows a binomial distribution with (φ−ψ)N

or less trials and a probability of success of t
N (1 + ψ

4 ). Thus,

E[Y ] ≤ (φ− ψ)N
(
t

N

(
1 +

ψ

4

))
≤ t

[
φ− 3ψ

4
− ψ2

4

]
≤ t

[
φ− 3ψ

4

]
Applying Lemma 4.3.2 with µH = (φ− 3ψ

4 )t (note that µ = E[Z] ≤ µH), we get

Pr
[
Y >

(
φ− ψ

2

)
t

]
= Pr

[
Y >

(
φ− 3ψ

4

)
t

(
1 +

ψ

4φ− 3ψ

)]
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≤ exp

−(φ− 3ψ
4 )t( ψ

4φ−3ψ )2

3


≤ exp

(
−8 ln(3

δ )

3(φ− 3ψ
4 )

)
[Substituting t = 128

ψ2 ln(3
δ )]

< exp
(
−8

3
ln
(

3
δ

))
[Since 0 < φ− 3ψ

4 < 1]

=
(
δ

3

) 8
3

(4.8)

Substituting (4.8) in (4.7), we get

Pr[E] ≥ 1− δ

3
−
(
δ

3

) 8
3

≥ 1− δ

4.3.3 Analysis of Gossip.

Consider an item θ that is disseminated through gossip in the asynchronous model. At the

start, θ is with one node, and in subsequent rounds it is disseminated to the other nodes. Let

TN be the number of rounds till θ is disseminated to all the N nodes.

Lemma 4.3.6 E[TN ] = 2N lnN +O(N).

Proof: Let ξi be the set of nodes that have θ after i rounds. Thus ξ0 has only one node (the

one that sampled θ during the initialization step). For j = 1 . . . N − 1, let random variable Xj

be the number of rounds required to increase the number of nodes that have θ from j to j + 1.

TN =
N−1∑
j=1

Xj

For i ≥ 1, in round i, a new node receives θ if a gossip message is transmitted from node

α to node β where α ∈ ξi−1 and β 6∈ ξi−1. Thus Xj is a geometric random variable, i.e. the

number of trials till the first “success”, where a success is defined as a message from node

α ∈ ξi−1 to a node β 6∈ ξi−1. The probability of a success is thus
(
j
N

) (
1− j

N

)
= j(N−j)

N2 . A

geometric random with probability of success p has expectation 1/p, so we get E[Xj ] = N2

j(N−j) .

Using linearity of expectation, we get:
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E[TN ] =
N−1∑
j=1

E[Xj ] =
N−1∑
j=1

N2

j(N − j)
= N

N−1∑
j=1

(
1
j

+
1

N − j

)

= 2N
N−1∑
j=1

1
j

= 2NHN−1 = 2N lnN +O(N)

where Hk denotes the kth Harmonic number.

Our proof for high-probability bounds on TN uses a result about the coupon collector

problem. Suppose there are coupons of Λ distinct types, labeled {1, 2, . . . ,Λ}, and one has to

draw coupons at random (with replacement) until at least one coupon of each type has been

collected. Initially, it is very easy to select a type not yet chosen, but as more and more types

get chosen, it becomes increasingly difficult to get a coupon of a type not yet chosen. We

present a high probability bound on the number of trials to collect all Λ coupons.

Lemma 4.3.7 Let the random variable CΛ denote the number of trials to collect at least one

coupon of each of Λ types. Then,

Pr[CΛ > 3Λ ln Λ] ≤ 1
Λ2

Proof: Let Ei denote the event that the coupon with label i ∈ {1, 2, . . . ,Λ} did not get drawn

at all in 3Λ ln Λ trials. Then,

Pr[CΛ > 3Λ ln Λ] = Pr

(
Λ⋃
i=1

Ei

)
≤

Λ∑
i=1

Pr(Ei) (union bound)

=
Λ∑
i=1

(
1− 1

Λ

)3Λ ln Λ

≤
Λ∑
i=1

(
e−

1
Λ

)3Λ ln Λ
≤

Λ∑
i=1

1
Λ3

=
1

Λ2

Lemma 4.3.8

Pr[TN > 12N ln 2N ] ≤ 1
2N2

Proof: The dissemination of θ can be divided into two phases. The first phase starts with

the first transmission and continues until the object has reached N
2 distinct nodes. The second
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phase starts once it has reached N
2 nodes and continues until it reaches N nodes. Note that,

in the first phase, it is more unlikely to find a source node that has θ and it is easy to find a

destination that does not have θ. Once θ has reached N
2 nodes, the situation reverses. Let T1

and T2 be the number of rounds taken by the two phases, respectively.

More formally, let Xj be defined as in the proof of Lemma 4.3.6. Let T1 =
∑N/2
j=1 Xj , and

T2 =
∑N−1
j=N

2
+1
Xj . Clearly, we have TN = T1 + T2.

To bound TN , we note that if TN > 12N ln 2N , then at least one of T1 or T2 should be

greater than 6N ln 2N . In Lemma 4.3.9, we show that T1 and T2 are bounded by 6N ln 2N ,

with high probability. Thus,

Pr[TN > 12N ln 2N ] ≤ Pr[(T1 > 6N ln 2N) ∪ (T2 > 6N ln 2N)]

≤ Pr[T1 > 6N ln 2N ] + Pr[T2 > 6N ln 2N ] (union bound)

≤ 1
4N2

+
1

4N2
(Lemma 4.3.9)

=
1

2N2

Lemma 4.3.9

Pr[T1 > 6N ln 2N ] ≤ 1
4N2

Pr[T2 > 6N ln 2N ] ≤ 1
4N2

Proof: For 0 < p ≤ 1, let G(p) denote a geometric random variable with parameter p. From

the proof of Lemma 4.3.6, we know that Xj = G
(
j(N−j)
N2

)
. Thus, T1 is the sum of independent

geometric random variables.

T1 =
N/2∑
j=1

G

(
j(N − j)
N2

)
Consider the random variable C2N , the number of trials needed to collect 2N coupons.

C2N =
2N∑
j=1

G

(
2N − j + 1

2N

)
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Let random variable C′ consist of the last few terms of C2N :

C′ =
N/2∑
j=1

G

(
j

2N

)

Note that for j = 1 . . . N/2, we have (N − j) ≥ N
2 , and hence j(N−j)

N2 ≥ j
2N . Thus we can

write C′ and T1 as follows:

C′ =
N/2∑
j=1

G(yj)

T1 =
N/2∑
j=1

G(xj)

such that xj ≥ yj , for all j = 1, . . . , N2 . We also know that if 0 < y ≤ x ≤ 1, then for

any γ > 0, Pr[G(y) ≥ γ] ≥ Pr[G(x) ≥ γ]. From Lemma 4.3.10, we have that C′ stochastically

dominates T1, i.e. for each γ ≥ 0, Pr[C′ ≥ γ] ≥ Pr[T1 ≥ γ]. Since C2N ≥ C′, we have:

Pr[T1 > 6N ln 2N ] ≤ Pr[C′ > 6N ln 2N ] ≤ Pr[C2N > 6N ln 2N ] ≤ 1
4N2

where we have used Lemma 4.3.7. The proof for T2 follows similarly.

Lemma 4.3.10 Suppose Y and Z are random variables defined as follows. Y =
∑k
i=1 Yi, and

Z =
∑k
i=1 Zi, where the Yis are mutually independent, the Zis are mutually independent, and for

every i = 1 . . . k, Yi stochastically dominates Zi, i.e. for every γ ≥ 0, Pr[Yi ≥ γ] ≥ Pr[Zi ≥ γ].

Then, Y stochastically dominates Z, i.e. for each γ ≥ 0, Pr[Y ≥ γ] ≥ Pr[Z ≥ γ].

Proof: For i = 1 . . . k, let fi and gi be the cumulative distribution functions of Yi and Zi

respectively.

fi(γ) = Pr[Yi ≤ γ]

gi(γ) = Pr[Zi ≤ γ]

Consider any i ∈ {1, 2, . . . , k}. We know that for each γ ≥ 0, fi(γ) = 1 − Pr[Yi > γ] ≤

1− Pr[Zi > γ] = gi(γ). Thus, fi(γ) ≤ gi(γ).
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We can view Yi and Zi as random variables in the same sample space as follows. For

i = 1 . . . k, let Ui be a number chosen uniformly at random from (0, 1). Let random variables

Y
′
i = f−1

i (Ui), and Z
′
i = g−1

i (Ui). It is easy to see that for every outcome for Ui, f−1
i (Ui) ≥

g−1
i (Ui). Thus random variables Y ′i and Z ′i satisfy Y ′i ≥ Z ′i. If the outcomes Ui, i = 1, . . . , k are

all independent, then the Y ′i s are mutually independent, and the Z ′is are mutually independent.

We observe that for every γ ≥ 0,

Pr[Y ′i ≤ γ] = Pr[f−1
i (Ui) ≤ γ] = Pr[Ui ≤ fi(γ)] = fi(γ) = Pr[Yi ≤ γ]

Hence, Y ′i and Yi have identical distributions. Similarly, Z ′i and Zi have identical distribu-

tions. Now, consider Y ′ and Z ′ defined as follows:

Y ′ =
k∑
i=1

Y ′i

Z ′ =
k∑
i=1

Z ′i

Since the Y ′i s are mutually independent, Y ′ has the same distribution as Y , and similarly Z ′

has the same distribution as Z. Further, for each outcome in the above sample space, Y ′ ≥ Z ′.

This implies that for each γ ≥ 0, Pr[Y ≥ γ] ≥ Pr[Z ≥ γ].

We now present a bound on the dissemination time of the smallest weights. Let T t denote

the time taken for all items in M t to be disseminated to all nodes.

Lemma 4.3.11 Pr[T t > 12N ln 2N ] ≤ 1
2N .

Proof: For i = 1 . . . N , let M t
i = Mi ∩M t i.e. the set of all elements at node i which have

been assigned weights among the smallest t weights. Note that in algorithm 11, all elements in

M t
i are transmitted together, i.e., in each round, either all elements in M t

i are transmitted, or

none of them are; thus, the upper bound on TN also applies to the dissemination time of M t
i .

Let Ei denote the event that M t
i is not disseminated to all nodes in 12N ln 2N rounds. From

Lemma 4.3.8, we have Pr[Ei] ≤ 1
2N2 .
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Pr[T t > 12N ln 2N ] = Pr

[
N⋃
i=1

Ei

]

≤
N∑
i=1

Pr[Ei] (union bound)

≤ N · 1
2N2

=
1

2N

We now present the main theorem on the correctness of algorithm 11.

Theorem 4.3.1 Suppose algorithm 11 is run for 12N ln 2N rounds. Then, with probability at

least 1− δ, an item of frequency φN or more in M will be identified as a frequent item at every

node. Similarly, with probability at least 1− δ, an item with frequency less than (φ− ψ)N will

not be identified as a frequent item at any node.

Proof: From Lemma 4.3.11, we have that all elements in M t are disseminated to every node

in the network after 12N ln 2N rounds. The theorem follows from Lemmas 4.3.5 and 4.3.4.

Since the size of the sketch at any time during gossip is at most t = 128
ψ2 ln(3

δ ), the number

of bytes exchanged in each round is O( 1
ψ2 ln(1

δ )). Hence, we get the following result on the

communication complexity, using Lemma 4.3.11.

Theorem 4.3.2 The number of bytes exchanged by algorithm 11 till the frequent items are

identified is at most O( 1
ψ2 ln(1

δ )N lnN), with probability 1−O( 1
N ).

4.4 Frequent Items with an Absolute Threshold

We now present an algorithm in the asynchronous model for identifying items whose fre-

quency is greater than a user-specified absolute threshold k. As in Section 4.3, let M =
⋃N
i=1Mi

denote the multi-set of all input values. The goal is to output all items v such that fv ≥ k

without outputting any item v such that fv < k − λ.
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The intuition is as follows. Similar to the algorithm for relative threshold, this algorithm is

based on random sampling. Unlike the algorithm for relative threshold, the sampling probabil-

ity can be statically decided by the nodes, based on k and λ. The elements of M are sampled

in a distributed manner, and the sampled elements are disseminated using gossip. Intuitively,

suppose we sample each element from M into a set S with probability 1/k. For a frequent item

v with fv ≥ k, we (roughly) expect one or more copies of v to be present in S. Similarly, for an

infrequent item u with fu < k−λ, we expect that no copy of u will be included in S. However,

some infrequent items may get “lucky” and may be included in S and similarly, some frequent

items may not make it to S. The probabilities of these events depend on the sample size.

To refine this sampling scheme, we sample with a probability that is slightly larger than

1/k, say c/k for some parameter c. Finally, we select those items that occur at least r times

within S, for some parameter r < c; the value of r will be determined by the analysis. The

smaller the value of λ, the greater should be the sampling probability, since we need to make

a more precise distinction between the frequencies of frequent and infrequent items. In the

actual algorithm, we use a sampling probability of 12k
λ2 ln 2

δ – note that this is Ω( 1
k ) since λ < k

and hence k
λ2 >

1
k .

The algorithm for the absolute threshold is shown as Algorithm 12. Through our analysis,

we give a bound on the number of rounds after which frequent items are likely to be found at

all nodes.

4.4.1 Analysis

We now analyze the correctness and the time complexity of algorithm 12. The plan is as

follows. Let M s be the set of elements in M that are sampled by the nodes, and hence get

disseminated through gossip. We first show in Lemma 4.4.1 that within a small number of

rounds, all elements in M s are disseminated to all nodes. We then show in Lemma 4.4.2 that

for each frequent item, M s contains sufficient copies of the item (with high probability), thus

showing that the probability of a false negative is small. Then, we show in Lemma 4.4.3 that

for each infrequent item, M s does not contain enough copies of the item to be identified as

a frequent item at any node (with high probability), showing that the probability of a false
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Algorithm 12: Gossip algorithm at node i for finding the frequently occurring items with
an absolute threshold k

Input: Data sets Mi; error probability δ, frequency threshold k, approximation error λ

// Initialization

1 Si ← Φ
2 foreach ` = 1 to Ni do
3 Choose ρ as a uniformly distributed random number in (0, 1)
4 if ρ < 12k

λ2 ln 2
δ then

5 Si ← Si ∪ {(i, `,m`
i)}

6 end
7 end
// Gossip

8 foreach round of gossip do
9 if sketch Sj is received from node j then

10 Si ← Si ∪ Sj
11 end
12 if node i is selected to transmit then
13 select node j uniformly at random from {1, . . . , N}
14 send Si to j
15 end
16 end

// Query

17 when queried for the frequent items
18 foreach v ∈ {1, . . . ,m} do
19 if v occurs more than r = 12k2

λ2 (1− λ
2k ) ln 2

δ times in Si then
20 report v as a frequent item
21 end
22 end
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positive is small. Let T s denote the time taken for all items in M s to be disseminated to all

nodes.

Lemma 4.4.1

Pr[T s > 12N ln 2N ] ≤ 1
2N

Proof: For a single element θ ∈ M s that gets disseminated through gossip, the results of

Lemmas 4.3.6 and 4.3.8 from the analysis for relative threshold hold, because the underlying

gossip mechanism is same for both the algorithms. For i = 1 . . . N , let M s
i = Mi ∩M s, i.e., the

set of all elements at node i which were sampled by node i, and hence included in the sketch at

node i when it was initialized. Note that in algorithm 12, all elements in M s
i are transmitted

together, i.e., in each round, either all the elements in M s
i are transmitted, or none of them

are. Thus, the upper bound on TN from Lemma 4.3.8 also applies to the dissemination time

of M s
i . Let Ei denote the event that M s

i is not disseminated to all nodes in 12N ln 2N rounds.

From Lemma 4.3.8, we have Pr[Ei] ≤ 1
2N2 .

Pr[T s > 12N ln 2N ] = Pr

[
N⋃
i=1

Ei

]
≤

N∑
i=1

Pr[Ei]

≤ N · 1
2N2

=
1

2N

Lemma 4.4.2 False Negative. If v is an item with fv ≥ k, then with probability at least 1− δ,

v is returned as a frequent item by every node after 12N ln 2N rounds.

Proof: Let r = 12k2

λ2 (1 − λ
2k ) ln 2

δ . If v is such that fv ≥ k, then v is not reported by a node

in the following two situations.

• Less than r copies of v are present in M s.

• r or more copies of v were sampled into M s during the initialization, but some copies did

not make it to all nodes during the gossip.
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Let E1 denote the event that less than r copies of v are present in M s. Let E2 denote

the event that after 12N ln 2N rounds, all of M s was not disseminated to all the nodes in the

network. Let E denote the event that there was some node that did not report v as a frequent

item.

Pr[E] ≤ Pr[E1 ∪ E2] ≤ Pr[E1] + Pr[E2] (4.9)

Consider some k copies of v in the input. Let Xv be a random variable that denotes the total

number of these k copies of v that are in M s. Xv is a binomial random variable with fv trials

and the probability of success in each trial being 12k
λ2 ln 2

δ . It follows that E[Xv] = 12k2

λ2 ln 2
δ .

Using Chernoff bounds:

Pr[E1] = Pr[Xv < r] = Pr

[
Xv <

12k2

λ2

(
1− λ

2k

)
ln

2
δ

]

= Pr
[
Xv < E[Xv]

(
1− λ

2k

)]
≤ e−

3
2

ln 2
δ =

(
δ

2

) 3
2

<
δ

2

From Lemma 4.4.1, we have Pr[E2] < 1
N . Using the bounds on Pr[E1] and Pr[E2] in

inequality 4.9, and assuming N > 2
δ , we get:

Pr[E] ≤ δ

2
+

1
N
< δ

Lemma 4.4.3 False Positive. If u is an item with fu ≤ k − λ, where k
3
4 ≤ λ < k, then the

probability that u is returned by some node as a frequent item is no more than δ.

Proof: A false positive can occur if both these events happen (1)r or more copies of u are

present in M s; let E1 denote this event and (2)all r copies reach some node in the network

through gossip; let E2 denote this event. Let E denote the event that a false positive occurred.
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Pr[E] = Pr[E1 ∩ E2] ≤ Pr[E1]

Let Xu denote the number of copies of u that were sampled. Consider the “best case”

scenario for a false positive, when fu = k − λ. Then Xu is a binomial random variable with

E[Xu] = (k − λ)12k
λ2 ln 2

δ = 12k2

λ2 (1− λ
k ) ln 2

δ . Using Chernoff bounds:

Pr[E1] = Pr[Xu > r] = Pr

[
Xu >

12k2

λ2

(
1− λ

2k

)
ln

2
δ

]

= Pr

[
Xu > E[Xu]

(
1 +

λ
2k

1− λ
k

)]

≤ exp

(
−
(

ln
2
δ

)(
1

1− λ
k

))

=
(
δ

2

) 1

1−λ
k <

δ

2
[since 1

1−λ
k

> 1]

Lemmas 4.4.2, 4.4.3 and 4.4.1 together lead to the following theorem about the correctness

of the algorithm.

Theorem 4.4.1 Suppose algorithm 12 is run for 12N ln 2N rounds. Then, with probability at

least 1 − δ, any item with k or more occurrences in M will be identified as a frequent item at

every node. With probability at least 1− δ, any item with less than k−λ occurrences in M will

not be identified as a frequent item at any node.

We next analyze the communication complexity of gossip. Since each node initializes its

sketch with the sampled elements, but accumulates more elements as the gossip proceeds, the

sizes of the messages exchanged grow as the algorithm progresses. We note that the number

of elements exchanged between two nodes in any round is no more than the total number of

sampled elements, hence, the number of rounds of gossip required, times the maximum message

size is an upper bound on the communication complexity. Let Y denote the total number of

bytes that need to be exchanged in the network until the frequent items have been identified.
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Theorem 4.4.2 (Communication Complexity for Absolute Threshold) With high prob-

ability, Y = O(NNk
λ2 ln 1

δ lnN)

Proof: Let Z denote the number of elements sampled during initialization, i.e. Z = |M s|. Z

follows a binomial distribution with N trials, and probability of success in each trial equal to

12k
λ2 ln(2

δ ). Thus E[Z] = 12Nk
λ2 ln(2

δ ). Using Chernoff bounds:

Pr
[
Z >

18Nk
λ2

ln
(

2
δ

)]
= Pr

[
Z >

(
1 +

1
2

)
12Nk
λ2

ln
(

2
δ

)]

≤ e−
Nk
λ2 ln( 2

δ
) =

(
δ

2

)Nk
λ2

<
δ

2
[since N > λ, k > λ]

We note that Z · T s is an upper bound on Y. Thus, if Y is large, then either Z must be

large, or T s must be large. More precisely, using the above bound on Z, and Lemma 4.4.1, we

get:

Pr
[
Y > 216NNk

λ2
ln
(

2
δ

)
ln 2N

]
≤ Pr

[(
Z >

18Nk
λ2

ln
(

2
δ

))⋃
(T s > 12N ln 2N)

]
≤ Pr

[
Z >

18Nk
λ2

ln
(

2
δ

)]
+ Pr [T s > 12N ln 2N ]

<
δ

2
+

1
2N

< δ

4.5 Simulation Results

We used simulation to understand the following aspects of the algorithms that we developed.

First, we wanted to know how easy it was to implement these algorithms. Next, since theoretical

analysis is a pessimistic worst case analysis, we can expect the performance observed during

simulation to be better than the theoretical predictions. We set out to measure by how much

is the measured performance better than the theoretical predictions. Specifically, we measured

the convergence time, and the error rate of the algorithm (these terms are described precisely

below).
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4.5.1 Input Data and Metrics Used.

We used two types of datasets for the simulations.

Data Set I: Pareto-like Distribution The first one was generated by a Pareto-like

distribution. Given the domain of items [m] = {1, 2, . . . ,m}, to make the frequent algorithms

applicable, we needed a data distribution that can be made arbitrarily skewed, i.e., we wanted

n (n << m) of the data items from [m] to occur very frequently in the data set. During

generating the data, we kept a parameter to specify the number of frequent items. We made all

the frequent items equally probable, and the total probability of the frequent items was specified

by yet another parameter. For example, if we want the data to have 10 frequent items, and

the sum of the probabilities of these 10 items is 0.5, then the probability of generating each

of these 10 frequent items would be 0.05. Hence, if we have 5,000 nodes, and 100 elements

per node, then the expected number of occurrences of each item that we desire to be frequent

is 5000 × 100 × 0.05 = 25, 000. We tried three different dataset sizes: 500000, 1000000 and

1500000. For each dataset size, we generated 10 different datasets, and for each of these 10

different datasets (of the same size), we formed the sketch and gossiped it 10 times, to average

out the errors due to randomization. So each reading using this distribution (in Figures 4.2

and 4.3) is an average of 100 readings.

Dataset II: Zipfian+Uniform Distributions The second dataset was generated from

a mixture of Zipfian and uniform distributions. Once again, we fixed a small number (n)

of items from [m] that would be generated with high frequency. According to the Zipfian

distribution, the probability of the rth most frequent item (r ∈ {1, 2, . . . , n}) was assigned by

the following probability mass function:

f(r) =
1
r∑n
i=1

1
i

The sum of the probabilities of these n frequent items was set to θ < 1. The remaining

m−n items from the domain [m] were all assigned equal probability (this is where the uniform

distribution came in), which was 1−θ
m−n . For each of the relative and absolute error algorithm,
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we worked with datasets of three different sizes: 500000, 1500000 and 4000000. To average out

the errors due to randomization, we created 100 different datasets of each size, and for each

dataset, we repeated the experiment 50 times, and averaged the error rate over these 5,000

runs; so each point in the plots in Figures 4.4 and 4.5 resulted from 5000 repetitions.

We analyze the convergence time and the error rates of the algorithms as functions of the

network size and message cost of the gossip, respectively.

4.5.2 Convergence Time

Informally, a system is defined to have converged if it is in a configuration where every

pair of nodes have “seen” each other’s sketch, either through direct or indirect communication.

More precisely, we define that for two nodes i and j, node i has communicated directly with

node j if i sent a message to j. We (recursively) define that node i has communicated indirectly

with node j if there exists a node k such that i has communicated directly/indirectly with k

and then k has communicated directly/indirectly with j.

Note that according to the above definition, system convergence is sufficient to ensure that

further communication will not lead to any changes in the state of the sketch at any node.

In Figure 4.1, we plot the number of rounds of gossip required for convergence as a function

of the network size N . Because the convergence time for uniform gossip depends only on the

network size, the same results apply for both absolute and relative thresholds. We note that

all sampled elements at a node are disseminated together. Hence, the convergence time is a

function only of the network size N , and does not depend on the size of the dataset, or on the

size of the samples.

Error Rate: Since the algorithm is a randomized approximation algorithm, there is a

small, but non-zero probability that the algorithm will fail, i.e. it would report infrequent

items as frequent (false positive) and/or would fail to identify frequent items (false negative).

The user specifies the degree of accuracy desired through the approximation error ψ (for relative

threshold) or λ (for absolute threshold) and the error probability δ.

We now describe the error rate metric that we used for measuring the observed error in our
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Figure 4.1: The number of rounds till convergence versus network size N .

experiments. Note that while the algorithm guarantees a low probability of error, we measure

the actual fraction of time that an error occurred during the simulations. The False Negative

Rate is defined as the ratio of the number of false negatives reported by a node to the number

of data items that are frequent, i.e., what fraction of the frequent items were not identified

as frequent by the node. The False Positive Rate is defined as the ratio of the number of

false positives reported by a node to the number of data items that are not frequent, but have

occurred at least once in the input. The Error Rate is defined as the maximum of the false

negative and the false positive rates. Since all nodes attain the same state once convergence

occurs, the error rate can be recorded from an arbitrarily selected node (we recorded it from

node 0). To see whether we really needed a sketch size as large as predicted by theory, we

measured the observed error rate at various sketch sizes.

For relative threshold, the theoretical sketch size was t = cr
ψ2 ln 3

δ (with cr = 128 as revealed

by the analysis), so we tried sketch sizes for various values of the constant cr. Figures 4.2 and

4.4 show the error rates as a function of the sketch size, for the Pareto-like distribution and



www.manaraa.com

113

 0

 0.02

 0.04

 0.06

 0.08

 0.1

425 595 850 1275 1701 2126

E
rr

o
r 

R
a

te

Sketch size

dataset size = 500,000
dataset size = 1,000,000
dataset size = 1,500,000

Figure 4.2: The error rate as a function of the sketch size for the relative error algorithm, with
the dataset genereated by the Pareto-like distribution. φ = 0.081, ψ = 0.02 and δ = 0.1.

the mixed distribution respectively.

For absolute threshold, the theoretical sampling probability was cak
λ2 ln 2

δ (with ca = 12 as

revealed by the analysis), so we tried sketch sizes for various values of the constant ca. Figures

4.3 and 4.5 show the error rates as a function of ca, for different dataset sizes and correspond-

ing different values of k and λ, for the Pareto-like distribution and the mixed distribution

respectively.

4.5.3 Observations

We make the following observations from our experience with the simulations, and results

in Figures 4.1 to 4.5.

• The theoretical analysis predicted that for a system with N nodes, 12N ln 2N rounds

of gossip are sufficient for convergence, with high probability. By carrying out simula-

tions with upto 50,000 nodes, we found from simulations that convergence was typically

achieved with less than 2N lnN rounds of gossip for all the values of N that we tried (see

Figure 4.1).
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• For relative threshold, while the analysis showed that in the expression for the sketch

size cr
ψ2 ln 3

δ , a constant factor cr = 128 is necessary, we found in our experiments that a

constant factor of cr = 0.25 was sufficient in all cases to meet the desired error bounds.

This indicates that in practice, the required sketch sizes may be much smaller than

predicted by theory.

• For absolute threshold, while the analysis showed that in the expression for the sampling

probability cak
λ2 ln 2

δ , a constant factor ca = 12 is necessary, we found in our experiments

that a constant factor of ca = 2 was sufficient in all cases to meet the desired error bounds.

This indicates that in practice, the required sampling probability may be smaller than

predicted by theory.
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4.6 Synchronous Model

In the synchronous communication model, all nodes transmit equally often. In each com-

munication round, every node can send a message to one other (randomly chosen) node. We

use a result due to Frieze and Grimmett [53], who considered the time to spread a rumor

in a network. In their model, there is a rumor message that has to spread to everyone in a

population of size N . Initially, a single person has the rumor. In every communication round,

each person who already has the rumor conveys it to another randomly chosen person in the

population, and we are interested in the number of rounds taken for the rumor to spread to all

N nodes. Note the similarity to our model of synchronous gossip.

Theorem 4.6.1 (Frieze and Grimmett 1985) Let TN denote the number of rounds re-

quired to spread a rumor among a population of size N . Then, (1) limN→∞
TN

log2N
= ln 2

with high probability and, (2) For γ > 0,Pr[TN > (1 + (γ + 1) ln 2) log2N ] = o(N−γ)

Suppose that instead of a single rumor, there were α different rumors originating at different

nodes, and all these rumors were being disseminated simultaneously among the N nodes. Let

T α be the number of rounds required for all the nodes to receive all α rumors.

Lemma 4.6.1 With probability 1− o( 1
N ), T α ≤ (1 + 2 ln 2) log2N + lnα.

Proof: For i = 1 . . . α, let ti denote the number of rounds required to disseminate rumor i.

Since all the α rumors are being disseminated simultaneously, we have T α = maxαi=1 ti. Using

the union bound:

Pr[T α > x] = Pr[
α⋃
i=1

(ti > x)] ≤
α∑
i=1

Pr[ti > x] = αPr[TN > x]

Using γ = 1 + logN α in Theorem 4.6.1, we get Pr[TN > (1 + 2 ln 2) log2N + lnα] = o( 1
Nα),

and the result follows.

Our algorithms for the synchronous time model for relative and absolute thresholds, are

described as Algorithms 13 and 14 respectively. These differ from the algorithms for the

asynchronous models (Algorithms 11 and 12) in that in every round of communication, every
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Algorithm 13: Synchronous gossip algorithm at node i for finding the frequent items with
a relative threshold

Input: Data sets Mi; error probability δ, relative frequency threshold φ, approximation
error ψ < φ

// Initialization

1 t← 128
ψ2 ln(3

δ )

2 Si ← Φ
3 foreach ` = 1 to Ni do
4 Choose w`i as a uniformly distributed random number in (0, 1)
5 Set Si ← Si ∪ {(i, `,m`

i , w
`
i )}

6 end
// Gossip

7 foreach round of gossip do
8 if sketch Sj is received from node j then
9 Si ← Si ∪ Sj

10 if |Si| > t then
11 retain t elements of Si with the smallest weights
12 end
13 end
14 select node j uniformly at random
15 send Si to j
16 end

// Query

17 when queried for the frequent items
18 foreach v ∈ {1, . . . ,m} do
19 if at least (φ− ψ

2 )t (nodeID, elementID, value, weight) tuples exist in Si with value v
then

20 report v as a frequent item
21 end
22 end
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Algorithm 14: Synchronous gossip algorithm at node i for frequent items with an absolute
threshold k

Input: Data sets Mi; error probability δ, frequency threshold k, approximation error λ

// Initialization

1 Si ← Φ
2 foreach ` = 1 to Ni do
3 Choose ρ as a uniformly distributed random number in (0, 1)
4 if ρ < 12k

λ2 ln 2
δ then

5 Si ← Si ∪ {(i, `,m`
i)}

6 end
7 end
// Gossip

8 foreach round of gossip do
9 if sketch Sj is received from node j then

10 Si ← Si ∪ Sj
11 end
12 select node j uniformly at random from {1, . . . , N}
13 send Si to j
14 end

// Query

15 when queried for the frequent items
16 foreach v ∈ {1, . . . ,m} do
17 if v occurs more than r = 12k2

λ2 (1− λ
2k ) ln 2

δ times in Si then
18 report v as a frequent item
19 end
20 end
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node sends a message. Note that the sampling probability, the sketch size and the thresholds for

identification of frequent items in the algorithms for the asynchronous model also suffice for the

synchronous model, so the analysis of the random sampling is the same as in the asynchronous

model. The only change is in the gossip mechanism. We arrive at the following result:

Theorem 4.6.2 (Synchronous gossip) If the synchronous algorithms 13 and 14 are run

for 4 log2N rounds, then all frequent items (with relative and absolute thresholds, respectively)

will be identified with probability at least 1 − δ, and no infrequent item will be identified, with

probability at least 1− δ.

Proof: Similar to the asynchronous time model, in the synchronous model too, the analysis

of gossip does not depend on how many elements each node begins with, or how many elements

from each node find a place in the sketch; since all the elements from the (local) sketch of a

single node get disseminated together. The number of such local sketches is trivially no more

than N . If all these items are disseminated to all nodes, then the guarantees will be met.

Substituting α ≤ N in Lemma 4.6.1 yields the desired result. We can get a slightly tighter

result (but asymptotically still the same) by using a better bound on the number of sampled

items.

Note that for both absolute and relative thresholds, the number of rounds required in the

synchronous model is less than that required by the asynchronous model by a factor of Θ(N)

– this is to be expected, since in each round in the asynchronous model, a single message is

exchanged while in each round in the asynchronous model, N messages are exchanged.
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